Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data (J. Technology Innovation 2018)

Park, S., Lee, G. M., Kim, Y.-E., Seo, J. (2018). Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data (in Korean)Journal of Technology Innovation, 26(4), 199-232.

  • Funded by the Korea Institute of Science and Technology Information (KISTI)
  • Demo website: https://misr.sauder.ubc.ca/edgar_dashboard/
  • Presented at UKC (2017), KISTI (2017), WITS (2017), Rutgers Business School (2018)

There are increasing needs for understanding and fathoming of the business management environment through big data analysis at the industrial and corporative level. The research using the company disclosure information, which is comprehensively covering the business performance and the future plan of the company, is getting attention. However, there is limited research on developing applicable analytical models leveraging such corporate disclosure data due to its unstructured nature. This study proposes a text-mining-based analytical model for industrial and firm-level analyses using publicly available company disclosure data. Specifically, we apply LDA topic model and word2vec word embedding model on the U.S. SEC data from the publicly listed firms and analyze the trends of business topics at the industrial and corporate levels.

Using LDA topic modeling based on SEC EDGAR 10-K document, whole industrial management topics are figured out. For comparison of different pattern of industries’ topic trend, software and hardware industries are compared in recent 20 years. Also, the changes in management subject at the firm level are observed with a comparison of two companies in the software industry. The changes in topic trends provide a lens for identifying decreasing and growing management subjects at industrial and firm-level. Mapping companies and products(or services) based on dimension reduction after using word2vec word embedding model and principal component analysis of 10-K document at the firm level in the software industry, companies and products(services) that have similar management subjects are identified and also their changes in decades.

For suggesting a methodology to develop an analytical model based on public management data at the industrial and corporate level, there may be contributions in terms of making the ground of practical methodology to identifying changes of management subjects. However, there are required further researches to provide a microscopic analytical model with regard to the relation of technology management strategy between management performance in case of related to the various pattern of management topics as of frequent changes of management subject or their momentum. Also, more studies are needed for developing competitive context analysis model with product(service)-portfolios between firms.