Tag Archives: mobile app

Matching Mobile Applications for Cross Promotion (ISR 2020)

Lee, Gene Moo, Shu He, Joowon Lee, Andrew B. Whinston (2020) Matching Mobile Applications for Cross-Promotion. Information Systems Research 31(3), pp. 865-891.

  • Based on an industry collaboration with IGAWorks
  • Presented in Chicago Marketing Analytics (Chicago, IL 2013), WeB (Auckland, New Zealand 2014), Notre Dame (2015), Temple (2015), UC Irvine (2015), Indiana (2015), UT Dallas (2015), Minnesota (2015), UT Arlington (2015), Michigan State (2016), Korea Univ (2021)
  • Dissertation Paper #3
  • Research assistant: Raymond Situ

The mobile applications (apps) market is one of the most successful software markets. As the platform grows rapidly, with millions of apps and billions of users, search costs are increasing tremendously. The challenge is how app developers can target the right users with their apps and how consumers can find the apps that fit their needs. Cross-promotion, advertising a mobile app (target app) in another app (source app), is introduced as a new app-promotion framework to alleviate the issue of search costs. In this paper, we model source app user behaviors (downloads and postdownload usages) with respect to different target apps in cross-promotion campaigns. We construct a novel app similarity measure using latent Dirichlet allocation topic modeling on apps’ production descriptions and then analyze how the similarity between the source and target apps influences users’ app download and usage decisions. To estimate the model, we use a unique data set from a large-scale random matching experiment conducted by a major mobile advertising company in Korea. The empirical results show that consumers prefer more diversified apps when they are making download decisions compared with their usage decisions, which is supported by the psychology literature on people’s variety-seeking behavior. Lastly, we propose an app-matching system based on machine-learning models (on app download and usage prediction) and generalized deferred acceptance algorithms. The simulation results show that app analytics capability is essential in building accurate prediction models and in increasing ad effectiveness of cross-promotion campaigns and that, at the expense of privacy, individual user data can further improve the matching performance. This paper has implications on the trade-off between utility and privacy in the growing mobile economy.

AppPrint: Automatic Fingerprinting of Mobile Applications in Network Traffic (PAM 2015)

Miskovic, S., Lee, G. M., Liao, Y., and Baldi, M. (2015). AppPrint: Automatic Fingerprinting of Mobile Applications in Network Traffic, In Proceedings of Passive and Active Measurement Conference (PAM 2015), New York, New York.

  • Based on an industry collaboration with Narus (then Boeing subsidiary, now acquired by Symantec)
  • PAM is a premier conference in the network measurement area (h5-index: 24).

Increased adoption of mobile devices introduces a new spin to the Internet: mobile apps are becoming a key source of user traffic. Surprisingly, service providers and enterprises are largely unprepared for this change as they increasingly lose understanding of their traffic and fail to persistently identify individual apps. App traffic simply appears no different than any other HTTP data exchange. This raises a number of concerns for security and network management. In this paper, we propose AppPrint, a system that learns fingerprints of mobile apps via comprehensive traffic observations. We show that these fingerprints identify apps even in small traffic samples where app identity cannot be explicitly revealed in any individual traffic flows. This unique AppPrint feature is crucial because explicit app identifiers are extremely scarce, leading to a very limited characterization coverage of the existing approaches. In fact, our experiments on a nation-wide dataset from a major cellular provider show that AppPrint significantly outperforms any existing app identification. Moreover, the proposed system is robust to the lack of key app-identification sources, i.e., the traffic related to ads and analytic services commonly leveraged by the state-of-the-art identification methods.