Tag Archives: health sciences

Understanding Absence Epilepsy

Did you know that epilepsy is the fourth
most common neurological problem of our society?

Epileptic seizures are the result of abnormal activity in the brain. Source: Youtube

Epileptic seizures are the result of abnormal activity in the brain. Absence epilepsy is one form of epileptic seizures, characterized by a momentary loss of awareness, usually lasting less than ten seconds. What differs an epileptic seizure from a non-epileptic seizure is that it is recurrent and non-epileptic seizures may be induced by psychological issues or stress-related factors.

Absence epilepsy is often associaed with children who have trouble in school, social problems, or who misbehave often. Source: Flickr

Absence epilepsy is often associated with children who have trouble in school, social problems, or who misbehave often. Source: Flickr

This condition is more common among children than in adults. As a result, absence seizures are often mistaken as daydreaming or periods of blanking out. Symptoms of absence seizures include fluttering eyelids, smacking of the lips, or rubbing fingers together. Absence epilepsy is often associated with children who have trouble in school, social problems, or who misbehave often. Most children will outgrow their seizures by age 18, however in some cases they can continue throughout the rest of their lives.

To understand a bit more about absence epilepsy, the podcast below depicts a scenario of a child experiencing absence seizures and how current research will fuel further medical studies to help with this disorder.
YouTube Preview Image

There are current studies being conducted on the causes of this condition at the University of British Columbia, and we interviewed Dr. Stuart Cain at the Djavad Mowafaghian Centre for Brain Health about his research on absence epilepsy.

The main focus of Dr. Cain’s research is on calcium channels in the brain, and the role they play in absence epilepsy. It is found that the overactivity of certain calcium channels located specifically in the cells of the brain leads to a phenomenon known as “burst-firing”, and this is thought to be what triggers absence seizures.

The causes of absence epilepsy are still unknown, although there are many theories as to what causes an absence seizure. Dr. Cain believes that when overactive brain cells in one specific region communicates with two other regions of the brain and causes them to be stuck in a synchronous loop; this is what causes absence epilepsy.

The video below explains further on how absence seizures occur, and what the main findings of Dr. Cain’s research were:
YouTube Preview Image

There are currently two types of drugs available to treat absence epilepsy, and although they work for most people in stopping absence seizures from occurring, they have not been shown to be 100% effective.

Dr. Cain and his team of researchers’ study serve as foundation for further development of anti-seizure medications to control absence seizures. He believes that in order to find a drug that will be completely effective in controlling absence seizures, the drug will need to target the calcium channels in the brain which cause burst-firing. Dr. Cain suggests that the next move is to push pharmaceutical industries to create a drug capable of doing just that. If this proves to be successful, perhaps then children will not have to worry about absence epilepsy affecting their lives.

Posted on April 4, 2016
By Emma Peachey, Jenny Ung, Karanvir Gill, Harsh Bhatt

The Resurrection of the Antibiotic?

Antibiotics?

Antibiotics are bacteria-killing drugs that either inhibit the growth of bacterial cell walls (the protective wall surrounding the bacteria) or stop bacteria from replicating by manipulating bacterial DNA. Evidence of the use of antibiotics such as tetracycline

tetracycline, Source: wikimedia commons

tetracycline, Source: Wikimedia Commons

have been found in fossils dating back to 350 Common Era and has since evolved alongside human technology to become more effective and accessible to the everyday consumer. Common uses of antibiotics include disinfecting wounds, mediating safe child birth and curing food poisoning. Using antibiotics, countless lives have been saved in human history especially in major historical events such as World War II. The following link demonstrates the effects of the drug Penicillin on the outcome of World War II which was discovered by Alexander Fleming in 1928 (http://classroom.synonym.com/did-invention-penicillin-affect-world-war-ii-8709.html).

Bacteria vs. Antibiotic?

But, antibiotics are double-edged swords. Bacteria has been slowly adapting to various antibiotics and evolved so that some antibiotics are no longer effective. This is due to mainly two reasons:

  1. People have been misusing and overusing antibiotics for the last couple of decades which allowed bacteria to have an easier time adapting and building resistance to the antibiotics.
  2. Bacteria is a very flexible life from in the aspect that it adapts quickly and have quick mutation cycles.

Dangerous cases have resulted where Super Bugs which are bacteria resistant to antibiotics have started to grow in hospitals infecting patients receiving various treatments. These cases have often resulted in mortality in these patients. The following illustration demonstrates the quick adaptability of a bacteria cell to an antibiotic.

512px-Artificial_Bacterial_Transformation.svg

Bacteria/ Antibiotics, Source: Wikimedia Commons

The Battle is Won?

The information presented above must be shocking to some but rest assured because scientists believe that they have found an antibiotic that does not induce bacterial resistance. Teixobactin

Teixobactin, Source: Wikimedia Commons

Teixobactin, Source: Wikimedia Commons

discovered  earlier last year appears to successfully combat the development of bacterial resistance. The key in why this antibiotic is so effective in prohibiting bacterial resistance is the fact that it is able to inhibit bacterial growth in two methods as opposed to the normal one method attack of alternative antibiotics. Teixobactin prohibits the formation of both lipid II and lipid III in a bacteria which are detrimental in the formation of bacteria cells walls. Even if the bacteria is able to adapt by restoring the ability to produce of one of these lipids, the other lipid would still be inhibited.

The following is a YouTube video provided by Newsy Science which outlines the basics of what this new antibiotic can do and the mechanism behind it.

Hopefully, this new antibiotic marks the oncoming of a new age of drug use where antibiotic will no longer induce bacterial resistance.

By: Ming Lun (Allan) Zhu

 

Organisms Inside Us

Have you ever wondered how many micro organisms are living inside us? Micro organisms are living organisms that cannot be seen with our naked eyes. They may be multicellular (made out of more than one cell) or unicellular (made out of one cell). Our human body is packed with trillions of microbes (or micro organisms). In fact, our own body cells are out numbered with a ratio of 1:10. So, we are technically 90% germs and 10% human. Microbes are found in all parts of our body in different proportions. Our lung has approximately 1000x less microbes than our mouth and has approximately 1 billion times less microbes than our intestines. Although most microbes are harmless to us, some may cause bacterial infections in humans.

The Human Body = 90% Germs + 10% Human

Top three functions microbes in our body:

  1. Defense mechanism: Microbes in our lungs, intestines and our skin provide the first line of defense against harmful bacteria that enters our body. Good microbes found in these areas play an essential role in preventing the spread of harmful microbes by occupying space so less space are available for harmful microbes to settle down inside us. Thus, preventing us from bacterial infections that may cause fever, diarrhea or other problems. Other than that, researchers have found evidence that microbes that live inside us help promote our immune system cells to grow and replicate.
  2. Keeping us in shape: The trillions of microbe colonies in our intestines help digest fats and carbohydrates, facilitating the absorption of nutrients in cells. Our intestinal microbes also ferment food that we consume. The fermentation process produces chemicals that speeds up our metabolic processes. As a result, the microbes in our gut helps us keep in shape by increasing our metabolism.
  3. Detoxifies us: Microbes living in us are also capable of digesting toxins that we accidently ingest into less harmful substances. Therefore, preventing us from being poisoned. For example, the microbe Lacrobacillus probiotics found in food help the human body detoxify heavy toxic metals such as aluminum.

Good microbes that keep us healthy

Where do we get microbes that live in our body? Most of our microbes that inhabit our intestines comes from the food we ingest. Our skin and lung microbes come from the air we are exposed to. Recently, researchers discovered that newborn infants get their microbes from their mother’s breast milk and vagina. Researchers found that the method of delivery may have an effect on the diversity of intestinal microbes in newborns. They discovered that infants born vaginally and infants born by caesarean section have different intestinal microbe composition. This indicates that we start to develop our microbe colonies from the day we were born.

Microbes inside our body

Benefits of Breastfeeding: Breast Milk Contains Sugars that Contribute to Healthy Infant Growth

Were you aware that the thousands of bacteria residing in our gastrointestinal tract (gut) and their interactions with the dietary foods we consume actually have a great impact on human health?

Two 25-milliliter samples of human breast milk. The lefthand sample is first milk produced and the righthand sample is milk produced later during the same pumping.

Two 25-milliliter samples of human breast milk. Source: Wikipedia Commons

Inspired by this discovery, a team of researchers led by Jeffrey Gordon from the Washington University School of Medicine in St.Louis found that the interactions of gut bacteria with the sugars in breast milk promote healthy infant growth.

Why is healthy infant growth a topic of discussion?
Every year, childhood malnutrition causes over 3 million deaths, leads to stunted growth and is associated with impaired cognitive ability.

Branched Oligosaccharide Structure

Branched Oligosaccharide Structure.                  Source: Wikipedia Commons

In Malawai, Africa, almost 50% of children under the age of 5 showed stunted growth. The researchers collected samples of human breast milk from those mothers with healthy babies or stunted babies. They discovered that the amount of oligosaccharides (sugar) in the breast milk containing sialic acid, an essential nutrient for brain development and cognition, were much greater in the mothers with healthy, relative to stunted growth babies.

This finding suggests that the sugars in the breast milk contribute to healthy infant growth. To analyze whether this was the case, the researchers created animal models, ensuring that both the bacteria in the gut and the diet could be manipulated. Gordon and his team began by isolating bacterial strains from fecal matter of the undernourished babies and inserted it into mice or piglets. Then, the researchers fed the mice or the piglets a typical Malawian diet, consisting of legumes, corn, vegetables, and fruit, a diet itself which is insufficient for healthy growth.

Whey

Whey, a by-product of cheesemaking. Source: Wikipedia Commons

With the mice and the piglets mimicking the undernourished Malawian infants, Gordon and his team then began testing effects of the sialic acid-containing sugars. They used cow milk as an alternative because of the difficulty to purify large amounts of sugars from human breast milk. They were able to obtain sialic acid-containing sugars from whey, a by-product of cheesemaking, and fed it to the animals. The mice and piglets showed significant improvements in growth, in both muscle mass and in bone volume. The mice and piglets also showed improved brain development and metabolic activities in the liver.

Because the bacteria in the gut was allowed to be manipulated, the researchers were able to pinpoint which bacterial strains were affected by sialic acid-containing sugars and how the different strains interacted with one another. They found that one strain of bacteria fed on the sialic acid-containing sugars and another strain fed on the digested products of sialic acid-containing sugars. This revealed a possible food web within the bacterial gut community.These two strains of bacteria alone were not sufficient enough to explain healthy growth in the mice and piglets, signifying that more complex interactions among different bacteria in the gut were necessary for growth.

The results of their study were recently published in Cell and serves as the foundation for future studies on the benefits of the components of breast milk on healthy infant growth and its interaction with gut bacteria.

 

Posted on February 22, 2016 By Jenny U

Type 1 Diabetes: A Potential Cure?

Type 1 Diabetes, also known as diabetes mellitus type 1, is a condition characterized by the impaired ability of one’s pancreas to produce insulin. In an individual with type 1 diabetes, the immune system malfunctions and attacks the beta cells of the pancreas, which are responsible for producing insulin. This classifies type 1 diabetes as an autoimmune disease, which is where the immune system attacks the body, thus it is currently incurable. The current treatment for this condition involves daily injections of insulin to allow the individual to regulate their blood sugar levels. Unfortunately, insulin therapy has side effects, such as hypoglycemia (low blood glucose levels) or hyperglycemia (high blood glucose levels) from incorrect dosages, and some individuals may be allergic to the preservatives added to insulin medication. Furthermore, insulin therapy involves precise control of blood sugar levels, and this is very difficult to achieve, often causing patients to face long-term medical problems as a result.

Diagram of the pancreas and beta cells. Via Wikimedia Commons.

Diagram of the pancreas and beta cells. Via Wikimedia Commons.

So what is this new potential cure? It began in 2014, when a team of Harvard University researchers used human stem cells, unspecialized cells that can become cells with a specific function, to create new beta cells in large quantities, as published in Cell. This new technique of creating insulin producing cells from human embryonic stem cells was a big step in diabetes research. In further experiments, these beta cells were transplanted into diabetic mice, as an attempt to replace the destroyed beta cells. Unfortunately, the immune system in the mice destroyed these new beta cells as well.

The experiments were first done on lab mice. Via Wikimedia Commons.

The experiments were first done on lab mice. Via Wikimedia Commons.

A team of researchers from MIT and several other institutions have devised an “invisibility cloak” for the beta cells, so they can hide from the faulty immune system. The cloak is composed of modified alginate, which is a material isolated from brown algae. After testing 800 various derivatives of this alginate capsule, they chose the best capsule from the tests, known as triazole-thiomorpholine dioxide (TMTD). This research was shown in a recently posted article in the Nature Biotechnology journal.

Brown algae that form the alginate used in "invisibility cloak". Via Wikimedia Commons.

Brown algae that form the alginate used in “invisibility cloak”. Via Wikimedia Commons.

The results were incredible! As a study in Nature Medicine showed, the injected mice were able to produce insulin until the implants were removed 174 days later. This has massive implications for diabetes therapy, as not being dependent on insulin injections is the end goal. If these implants were able to function in humans, then the diabetic individuals would not require insulin injections anymore. The next step of research is to move from trials on mice to trials on primates. If the tests on primates show positive results, the step after would be human trials. Researchers are making large strides towards a cure for type 1 diabetes.

– Kush Khanna