Tag Archives: survival analysis

Strategic Competitive Positioning: An Unsupervised Structural Hole-based Firm-specific Measure

Lee, Myunghwan, Gene Moo Lee, Hasan Cavusoglu, Marc-David L. Seidel. “Strategic Competitive Positioning: An Unstructured Structural Hole-based Firm-specific Measure”, Under Review. [Submitted: May 13, 2022]

  • doc2vec model of 10-K reports: Link
  • Presented at UBC MIS Seminar 2018, CIST 2019 (Seattle, WA), KrAIS 2019 (Munich, Germany), DS 2021 (online), KrAIS 2021 (Austin, TX), UT Dallas 2022, KAIST 2022, Korea Univ 2022, INFORMS 2022 (Indianapolis, IN)
  • Funded by Sauder Exploratory Grant 2019
  • Research assistants: Raymond Situ, Sahil Jain

In this research methods paper, we propose a firm-specific strategic competitive positioning (SCP) measure to capture a firm’s unique competitive and strategic positioning based on annual corporate filings. Using an unsupervised machine learning approach, we use structural holes, a concept in network theory, to develop and operationalize an SCP measure derived from a strategic similarity matrix of all existing U.S. publicly traded firms. This enables us to construct a robust firm-level SCP measure with minimal human intervention. Our measure dynamically captures competitive positioning across different firms and years without using artificially bounded industry classification systems. We illustrate how the measure dynamically captures firm-level, industry-level, and cross-industry strategic changes. Then, we demonstrate the effectiveness of our measure with an empirical demonstration showing the imprinting effect of SCP at the time of initial public offering (IPO) on the subsequent performance of the firm. The results show that our unsupervised SCP measure predicts post-IPO performance. This paper makes a significant methodological contribution to the information systems and strategic management literature by proposing a network theory-based unsupervised approach to dynamically measure firm-level strategic competitive positioning. The measure can be easily applied to firm-specific, industry-level, and cross-industry research questions across a wide variety of fields and contexts.