Tag Archives: global warming

The Escalator to Extinction

On those rare summer days when the temperature is climbing to nearly forty degrees celsius, you have probably dreamed of climbing into a freezer. Well, this desperation to escape the heat is not unique to us. As humanity drives the temperature up through global warming, many tropical species are in desperate need of a good fan. But with a lack of appliances in the tropical wilderness, they are starting to migrate up mountains to escape the heat. However, this one way escalator ride up the mountain may be leading to extinction. 

Source: Pixabay.com

Dr. Freeman’s Research: 

Dr. Benjamin Freeman, an evolutionary ecologist at the University of British Columbia, aims to understand how global warming is impacting where montane (mountain-dwelling) species live. His recent study highlights how climate change is causing species to shift upward, which can lead to the extinction of species living higher up on mountains. This phenomenon is known as the “escalator to extinction” which is explained by the video below: 

https://www.youtube.com/watch?v=iOoO2_DxwS0&ab_channel=MatthewLim

To make these conclusions, Dr. Freeman examined datasets from various studies that measured elevational shifts associated with global warming over the last 100 years. Based on his findings, the escalator to extinction is around the corner for tropical montane species. 

Effects of the escalator to extinction: 

This phenomenon can have various effects on montane species and our society as discussed in the following podcast.

Thank you to freesound.org for providing the sound effects used in our podcast (plasterbrain, InspectorJ)

In the podcast, Dr. Freeman mentions that less available land at higher altitudes of a mountain are threatening montane species. 

Why is this the case?

Less available land at higher altitudes often means less resources for organisms to use. Thus, as species continue to shift upslope to evade the heat, there will be increased competition within species populations and between different species. This competition for resources such as food and habitat will likely result in the strongest species surviving, and lead to extirpations (loss of species populations) of weaker species. Some examples of extirpations caused by the escalator to extinction are populations of the White-eared Solitaire and Fulvous-breasted Flatbill as found by a previous study by Dr. Freeman.

Furthermore, temperature-dependent (requiring specific temperature to survive) crop diseases such as Agrobacterium tumefaciens shifting upslope can greatly affect human populations living in mountains. For example, introducing new crop diseases can lead to lower crop yields. Thus, human communities in mountains can potentially face unexpected food shortages, and be forced to find different sources of food. 

How can we prevent this? 

If we cannot stop global warming, we must guide animals to higher elevations to save them from extinction. Many species go extinct because they are restricted from higher elevations due to human agricultural activities that divide up lands. One possible way to facilitate their upward migration is through the development of corridors that give species a path to higher elevations. In addition, we can plant trees at higher altitudes to provide new habitats for these displaced organisms.

Once grown, these newly planted trees will provide accessible habitats for species and as a result, potentially reduce extirpation events. 

Source: commons.wikimedia.org/

But really, the best thing we can do is raise awareness of this critical issue.

-Karnvir Dhillon, Declan O’Driscoll, Samantha Nalliah, Matthew Lim 

 

Global Warming: A Death Wish for Fish

After a study done in 2020 using computer simulations, Dr. William Cheung and his team from the University of British Columbia found a concerning fate for our fish: as a result of increased ocean temperatures, the fish populations in the northeast Pacific Ocean are predicted to decline significantly by 2050.

The Great Barrier Reef, Australia.
Credit: CruiseExperts, cruiseexperts.com

We take for granted how large and beautiful our oceans really are. They are full of life, and house over 2 million different species of animals ranging from the beautiful coral reefs in Australia, to the largest animals ever discovered. However, imagine if the oceans were empty, and life no one longer existed underwater. Sadly, this is becoming a reality, and according to marine expert Dr. William Cheung, we are headed straight in this direction.

Continued global warming resulting from our emissions has caused the temperature of surface ocean waters to steadily increase. These rises in temperature have led to a doubling of marine heatwaves, or periods of extremely high temperatures in ocean waters, since around 1982 (as seen in the graph below), in turn significantly affecting all marine life, especially fish.

Large Recent Increases in Marine Heatwaves
Credit: Climate Central, climatecentral.org

Dr. Cheung not only identified patterns of current decline in fish populations as a result of marine heatwaves, but has predicted significant future decline as global warming continues. In fact, Dr. Cheung predicts that populations of common fish species such as sockeye salmon will decrease by more than 40% by 2100. These predictions are based on the assumption that we do not change our current emission trends, which does not have to be the case.

You might not think this, but you, me, and every single person on this planet plays a part in our global warming problem. Everyday decisions such as driving your car can contribute to global warming and have downstream effects in marine environments, as described in the video below.

Although there are new policies tackling climate change, and large progressions made in the right direction, according to Dr. Cheung, this is still not enough. He says,

“We really need to pick up the pace and accelerate the actions against climate change.” 

So what can I do to help?

Fixing a global problem like climate change requires global contributions, and it starts with all of us. Although it might be true that your changes alone wouldn’t stop climate change, if all 7.6 billion people on the planet made one small positive change, the effects would be enormous. The TeamTrees podcast below highlights the many different ways we can start protecting the future of our oceans now.

Thank you to freesound.org (Robinhood76, SomeoneCool15, Simon_Lacelle, Votichez, Sentuniman) for providing the sound effects used in our podcast.

If we are to save the fish and the rest of marine life from these increasingly prevalent marine heatwaves, we need to act now.

~SO Group #3: William, Jessica, Balkaran, Adam

The Power of Seaweed: How a Small Snack for Cows can have a Big Impact on the Planet

Apparently, seaweed is not just healthy for people, but when given to cows it will be good for the planet. The large amounts of greenhouse gases released into the atmosphere are driving global warming. A significant amount of these emissions are a result of cows belching and flatulating in the amount of around 142.5 million metric tons of methane per year.

Cows Feeding: Source: flickr.com/U.S. Department of Agriculture

Beef and dairy are common sources of nutrition for people all over the world. In Canada alone, the average person eats around 40 lb of beef and drinks 66 L of milk per year. The issue is growing cattle is notorious for its harmful environmental impact due to the methane gas the animals release. Although methane is only 16% of the total human-caused greenhouse emissions, it is much more potent than carbon dioxide (which makes up 76% of the greenhouse gases released), making it an important agent we need to manage. The ecologically harmful process, of producing and emitting methane by cows, is described in the video below created by Laura Beil and Erin Otwell at Science News.

Video Source: Science News | YouTube

It turns out that adjusting cattle feed can greatly reduce the amount of methane they create. A recent study headed by Dr. Ermias Kebreab and his team found that adding a certain type of red seaweed (scientifically known as Asparagopsis taxiformis) to cows’ diet could play an important role in reducing greenhouse emissions. The researchers observed that the more seaweed in the diet the less methane the cows released. In addition, the study tested how different forage (grass and hay) to concentrate (corn and molasses) ratios, in combination with the seaweed, decreased cow methane production. The best results were noted when their diet had lower forage levels (compared to concentrate) and greater amounts of seaweed. This feed combination was measured to reduce beef methane emissions by more than 80%!

The type of red seaweed fed to the cows: Asparagopsis taxiformis: Source: flickr.com/Guilherme Fluckiger

It is worth noting that adding seaweed to the cows’ diet did not change their meat quality. A tasting panel confirmed that steaks were equally delicious regardless of what the cows ate in the study.

Adding seaweed to cow feed is a simple, low-cost, and nature-based solution to a very serious problem. The ability to reduce the amount of methane cows release is great news for the many people who rely on dairy and beef in their diet.

Child Enjoying a Burger: Source: Flickr.com/Anna-Lena Nordin

– Adam Soliman

Plastics: Why They Are Bad, and a New Plant-Based Solution!

From water bottles to cigarette butts to straws, plastic has become an important asset to many of the products and appliances that we use today. However, with the huge influence that plastic has on the manufacturing industry, comes the potential destruction of the environment. Luckily, a study conducted by Mecking and others discusses the invention of a new plant-based plastic that can potentially fix this problem!

why are plastics bad?

Most of the plastics that are used today are manufactured from petroleum, which is a fossil fuel that is formed when dead organisms are broken down throughout millions of years. Then, petroleum is converted into a type of material that is unrecognizable by the organisms that normally break down products like petroleum. This results in plastics that decompose very slowly, or do not decompose at all. These plastics tend to accumulate and end up in landfills and incinerators, or even worse, dumped into the environment.

“Plastic Ocean” by Kevin Krejci is licensed with CC BY 2.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/2.0/

what about recycling?

There are two types of plastics that need to be addressed. The first type is thermoset plastics. These are plastics that are not recyclable. The second type is thermoplastics. These are plastics that can be melted into smaller parts and re-formed into different plastics. This is the process that we call mechanical recycling. However, every time these plastics are recycled, their quality starts to decrease. In fact, a piece of plastic can only be recycled 2-3 times before it reaches a point where it can no longer be used!

plant-based plastic to the rescue

A solution to this imperfect recycling procedure is to utilize a new recycling method known as chemical recycling. This is a process that breaks down plastics at the molecular level, which can then be used to create other materials without a decrease in quality.

Check out the video above by CNBC for more information on chemical recycling!

 

In Feb 2021, a paper was released in Nature by Mecking and others, discussing the invention of a new plant-based type of plastic. Rather than using fossil fuels such as petroleum, this type of plastic is composed of plant oils. This plastic can utilize chemical recycling at a much more efficient rate than what is originally possible.

Normally, chemical recycling of fossil-fuel-composed plastics requires a lot of energy; temperatures above 600 degrees Celsius are required and only 10% of the plastic can be utilized for other materials. In comparison, their new plant-based plastic only needs to heat to around 250 degrees Celsius and can utilize up to 96% of the original material!

Stefan Mecking, the lead author of the study, acknowledged in an interview in the Academic Times, that their new plastic would have a hard time competing with the cheap cost of ethylene. Hopefully, with further refinement, Mecking and his team will be able to lower the price point of their plastic to a level that is suitable for the plastic industry.

– Aaron Yoon

Microalgae Used to Create Biodiesel: An Organism That Can Save Our Planet?

As time continues to move forward, global climate change is becoming an ever-growing issue. In order to mitigate the effects of global warming, we as a society need to change our ways of living. Due to rapid industrialization and urbanization, there is an increased amount of pollutants emitted into the atmosphere that are slowly damaging the earth. In today’s world, most of the energy production is coming from fossil fuel burning, which is the key source of carbon dioxide (CO2) emissions to the atmosphere. Energy demand will continue to increase and as of right now, fossil fuels still contribute to 82% of the global demand. The figure below displays gas emissions from various modes of transportation.

Source: bbc.com

An article written in 2020, by Ashokkumar Veeramuthu and team, describes the potential use of microalgae to produce biodiesel. You may be asking, what are microalgae and what the heck is biodiesel? Let’s jump straight into it.

What is Biodiesel?

Biodiesel is made from materials such as plant oils. It’s an alternative to petroleum diesel and emits much less harmful substances into the atmosphere. Since we are slowly killing our planet, replacing our non-renewable energy sources with green alternative sources doesn’t sound like a bad idea.

Why use Microalgae?

You may be wondering, what is so special about microalgae? Why can’t we use some type of terrestrial plant like corn to produce biodiesel? Studies show that the use of microalgae is the best option for the production of a renewable and sustainable source of energy. Microalgae are photosynthetic organisms living in wet environments that can convert sunlight, water and COinto biofuel. There has been a shift of attention towards microalgae to produce biodiesel because microalgae provide many advantages over terrestrial plants. The benefits of microalgae include high lipid concentrations (which can easily be converted to biodiesel through a process called transesterification), rapid growth and minimal nutrient requirements. The table below compares values of the biodiesel productivity of microalgae and other plants.

Biodiesel productivity of different feedstocks. Source: intechopen.com

Microalgae also tend to grow 10x more rapidly than terrestrial plants and less than 10% of the land is required to produce the same amount of biomass. Additionally, microalgae don’t require large amounts of fertilizers to grow, unlike terrestrial plants. The cultivation of microalgae can be carried out by using wastewater, since it is rich in key nutrients. Furthermore, the use of wastewater decreases costs greatly and makes biodiesel production commercially viable.

This video showcases the general process of biodiesel production in a nutshell:

Source: David T. Kearns (YouTube)

In today’s world, there’s a shift of attention to deal with the issue of climate change. From Elon Musk creating fully electric vehicles to Joe Biden rejoining the Paris climate accord within hours into presidency, we as humans are finally taking initiative to save our planet. The future of creating fuels from microalgae sounds promising and having a range of renewable sources of green energy will be beneficial to us in the coming time.

– Parwaz Gill

Baby Sharks Face a Gloomy Future

Sharks are considered the lions of the sea, but due to climate change they are losing their glory. With global warming causing the rise of ocean temperatures, one particularly tough and beautiful species, the epaulette shark, sometimes referred to as the walking shark, may be heading towards disaster.

An Epaulette Shark

An Epaulette Shark: Source: flickr.com/Richard Ling

The epaulette shark is typically 70 – 90 cm in length and has dark spots running up and down its slender body. This shark notably has a large black circle outlined in white on each of its sides. It lives in the Great Barrier Reef in Australia and finds its food in shallow puddles between the coral. This shallow environment is dangerous; leaving most fish stranded out of the water, left to die under the hot sun. This amazing animal is not so easily defeated and is able to conserve its breath and march back towards the sea. The impressive survival mechanisms of the epaulette shark are shown and described in the video below created by PBS in 2017.

Video Source: Nature on PBS| Youtube

The epaulette shark has proven itself to be resilient in low oxygen environments. Previous experiments even found that their eggs and newborns are tolerant to ocean acidification. Regardless of this resilience, rising temperatures still pose a serious threat, especially to its offspring.

A new study carried out by Ph.D. candidate Carolyn Wheeler on the eggs of epaulette sharks, showed that increasing ocean temperatures significantly affect the development of its young. The researchers analyzed the growth of epaulette shark embryos until they hatched, at temperatures of 27°C, 29°C, and 31°C . It was found that the embryos grew faster at the higher temperatures, as in the warmer water the sharks tended to consume their yolk-sacks quicker, which is their only source of food before they hatch. This in turn caused them to hatch sooner, and due to the reduced time in their embryos, they were born smaller and lacking in energy. The newborns which hatched at higher temperatures struggled to survive and needed to eat significantly sooner after birth compared to those at 27°C. Other studies have additionally observed, that at 32°C the likelihood of epaulette shark eggs hatching becomes very low.

Epaulette Shark Embryo: Source: flickr.com/CLF

The average temperature of the Great Barrier Reef is currently at 28°C during the period of embryo development in the wild, but with climate models predicting that average temperatures in this region will rise to 32°C by the middle or end of the century these animals are in trouble. As we explored earlier, epaulette sharks are known to be tolerant to acidic conditions and are more resilient than any other shark to low oxygen environments.

Since the increasing temperatures will likely have a detrimental impact on the epaulette shark – which is considered a tough and resilient species – we can only imagine the negative impacts it will have on other more vulnerable wildlife.

– Adam Soliman

Microalgae Used to Create Biodiesel: An Organism That Can Save Our Planet?

It is quite obvious by now that if we don’t change our ways of living, our planet is doomed. Due to rapid industrialization and urbanization, there is an increased amount of pollutants emitted into the atmosphere that are slowly damaging the earth. In today’s society, most of the energy production is coming from fossil fuel combustion and this is the key source of COemissions to the atmosphere. The primary energy demand will continue to increase and as of right now, fossil fuels still contribute to 82% of the global demand of energy.

Source: bbc.com

An article written by Ashokkumar Veeramuthu and team describes the potential use of microalgae to produce biodiesel. You may be asking, what are microalgae and what the heck is biodiesel? Let’s jump straight into it.

What is Biodiesel?

Biodiesel is made from materials such as plant oils and animal fats. It’s an alternative to petroleum diesel and has a more favourable combustion profile as it emits much less CO, COand SOinto the atmosphere. Since we are slowly killing our planet, replacing our non-renewable energy sources with green alternative sources doesn’t sound like a bad idea.

Why Use Microalgae?

You may be wondering, what is so special about microalgae? Why can’t we use some type of terrestrial plant like corn to produce biodiesel? Studies show that the use of microalgae is the best option for the production of a renewable and sustainable source of energy. Microalgae are unicellular photosynthetic organisms living in aqueous environments that convert sunlight, water and COinto algal biomass. The reason why there has been a shift of attention towards microalgae to produce biodiesel is because microalgae provide a large range of advantages compared to terrestrial plants. The benefits of microalgae include high lipid concentrations (which can easily be converted to biodiesel through a process called transesterification), rapid growth and minimal nutrient requirements. The table below compares values of the biodiesel productivity of microalgae and other plants.

Amount of biodiesel productivity for different feedstocks. Source: intechopen.com

Microalgae also tend to grow 10 times more rapidly than terrestrial plants and less than a tenth amount of land is required to produce the same amount of biomass. Additionally, microalgae don’t require immense amount of fertilizers to grow unlike terrestrial plants. The cultivation of microalgae can be carried out by using wastewater, since it is rich in key nutrients. Furthermore, the use of wastewater decreases costs of cultivation greatly and makes biodiesel production commercially viable.

This video showcases the whole process in a nutshell:

 Source: David T. Kearns (YouTube)

In today’s world, there’s a shift of attention to deal with the issue of climate change. From Elon Musk creating fully electric vehicles to Joe Biden rejoining the Paris climate accord within hours into presidency, we as humans are finally taking initiative to save our planet. The future of creating fuels from microalgae sounds promising and having a range of renewable sources of green energy will be beneficial to us in the coming time.

– Parwaz Gill

Baby Sharks Face a Gloomy Future

Sharks are considered the lions of the sea but due to climate change they are losing their glory. With global warming causing the rise of ocean temperatures one particularly tough and beautiful species, the epaulette shark sometimes referred to as the walking shark, may be heading towards disaster.

An Epaulette Shark

An Epaulette Shark: Source: flickr.com/Richard Ling

The epaulette shark lives in the Great Barrier Reef in Australia and finds its food in shallow puddles between the coral. This shallow environment is dangerous and would leave most fish stranded out of the water left to cook and die under the sun. This amazing animal is not so easily defeated and is able to preserve its breath and march back towards the sea.

Video Source: Nature on PBS| Youtube

The epaulette shark has proven itself to be resilient in low oxygen environments but rising temperatures may not be handled so well, especially by its offspring.

A new study conducted by PhD candidate Carolyn Wheeler on the eggs of epaulette sharks showed that increasing ocean temperatures significantly affect the development of its young. The researchers analyzed the growth of epaulette shark embryos until they hatched, – at temperatures of 27°C, 29°C, and 31°C – measuring the growth, development and metabolic performance of the animals. It was found that the growth rates of the embryos increased at the higher temperatures, as in the warmer water the sharks tended to consume their yolk-sacks faster which is their only source of food before they hatch. This in turn caused them to hatch sooner, and due to the reduced time in the embryonic stage they were born smaller and lacking in energy. The newborns which hatched at higher temperatures struggled to survive and needed to feed significantly sooner after birth compared to those at 27°C. Other studies have additionally observed that at 32°C the likelihood of epaulette shark eggs hatching becomes very low.

Epaulette Shark Embryo: Source: flickr.com/CLF

The average temperature of the Great Barrier Reef is currently at 28°C during the period of embryo development in the wild, but with climate models predicting that average temperatures in this region will rise to 32°C by the middle or end of the century these animals are in trouble. As we explored earlier, epaulette sharks are known to be tolerant to low oxygen environments and are more so than any other shark. Additionally, in other experiments it has been found that their eggs and newborns are even tolerant to ocean acidification.

Since the increasing temperatures will likely have a detrimental impact on the epaulette shark – which is considered a tough and resilient species – we can only imagine the negative impacts it will have on other more vulnerable wildlife.

– Adam Soliman

Methane Reduction and the Magic of Mushrooms

When you think of Reishi mushrooms, what do you think of? A delicious food? A health fad? Well it may surprise you to know that beyond everyday consumption, Reishi mushrooms have a high potential for impacting our atmospheric conditions. A recent study done by researchers at the University of Minnesota examines certain fungus’ ability to capture and filter methane, and its impact on the current climate crisis.

 

Reishi Mushrooms. Source: Pixabay

 

Why is methane a problem?

Methane, a greenhouse gas, is one of many chemicals that contributes to the rise of global temperatures. It has many sources, both biological and man-made, the most common being agricultural practices, wetlands, and transportation of coal and natural gas. While most research is being done to reduce carbon dioxide emissions, it is just as important to address methane emissions, as in the first two decades of release, methane can be up to 84% more potent than carbon dioxide. Methane is incredibly effective at absorbing heat, which is what makes the chemical so detrimental to atmospheric conditions.

 

How do Reishi mushrooms help?

While there are currently other organisms that can break down methane, removing it from the atmosphere, there is one critical way that Reishi stands out:

In order for Reishi to degrade methane, the gas does not need to travel through any kind of biofilm, which decreases the total time needed for degradation. 

The cells that make up fungal structures, called hyphae, are able to extend and grow deep within the soil and other environments. When nutrients are detected, they travel through the hyphae until the desired location with the fungus is reached. There is a specific special protein, called hydrophobins, which is found on the exterior of the hyphae, which is responsible for trapping gases such as methane. Once trapped, the gas is transported within the fungus and is degraded as needed.

Mushroom hyphae. Source: Wiki Commons

The researchers who conducted the study found that Reishi mushrooms that are grown outside of the soil have a better removal rate, compared to those in the soil, where natural microbes may out-compete the mushrooms for nutrients. Shockingly, the researchers found that even dead fungi had some function at removing methane from the surrounding air.

While there is still a need for more research to be completed, it can be comforting to know that there are solutions to global warming that can come from the most unlikely places.

– Madeline Filewych