Category Archives: Issues in Science

Replacing UV Lights with a “Green” Alternative

With summer just around the corner, it’s nearing that time of year where we start slapping on sunscreen to protect ourselves. After all, it’s well known that ultraviolet (UV) rays from the sun can damage our DNA. Despite this, UV light is still used for all sorts of applications – ranging from UV lamps at nail salons, to the hardening of resins.

A UV lamp in action. Source: cottonbro, Pexel.

The question remains: is it necessary to use UV light in these processes?

Good news: no!

Alternatives to UV light for similar processes have been recently identified by researchers. One such researcher is Taylor Wright, a graduate student at the University of British Columbia. In 2020, Wright developed a safe, low-cost method which uses harmless green LED lights instead of UV light. Wanting to learn more about this research, we sat down for an interview with Wright.

Into the details of cross-linking

The previously mentioned applications (UV lamps, resin hardening) are examples of a process called cross-linking. For an explanation of cross-linking, as well as a walkthrough of Wright’s cross-linking method of a material called polydimethylsiloxane (PDMS), please refer to the following video:

Okay… why should I care about this?

As we’ve previously said, frequent use of UV light in cross-linking processes poses a health risk to workers. By substituting with green LEDs, Wright’s newly developed method could help eliminate potential health complications in workers who deal with cross-linking processes.

But wait, there’s more! This research can also be applied to the biomedical field, through making antimicrobial fabrics. Turns out, by slightly altering the chemical properties of PDMS, we can give PDMS antimicrobial properties. By dipping a piece of fabric into liquid PDMS, then cross-linking to produce a solid PDMS coating, we can produce antimicrobial fabrics! The diagram below helps visualize the process.

Step-by-step walkthrough of making the antimicrobial fabric. Source: Wright’s 3MT

This would have important implications for reducing the rate of infections in high-risk settings, such as hospitals. In the US alone, there are approximately 100,000 deaths resulting from infections acquired in a healthcare setting. Considering the COVID-19 pandemic that we’ve been in for a whole year now, this application has never been more relevant. Wright’s low-cost, simple, and safe method of producing antimicrobial fabrics could be crucial in reducing the impacts of any future pandemics.

Beyond the research

Although we learned much about his research during our interview with Wright, we were also able to get a glimpse into the person behind the science. To hear about his journey that resulted in the person he is today, listen to this week’s episode of Vancity Science, a podcast run by one of our members, Chie!

Audio sources: Blue Dot Sessions, Free To Use Sound – Royalty Free Sound Effects, Kyster, SnakeBarney, dobroide, KelliesKitchen, ZyryTSounds, ShadyDave, InspectorJ

 

Special thanks to Taylor Wright – we are excited to see further innovations by scientists with unique perspectives that can make the world a safer and better place!

– Sam Jung, Chie Nakayama, Madeline Filewych

Global Warming: A Death Wish for Fish

After a study done in 2020 using computer simulations, Dr. William Cheung and his team from the University of British Columbia found a concerning fate for our fish: as a result of increased ocean temperatures, the fish populations in the northeast Pacific Ocean are predicted to decline significantly by 2050.

The Great Barrier Reef, Australia.
Credit: CruiseExperts, cruiseexperts.com

We take for granted how large and beautiful our oceans really are. They are full of life, and house over 2 million different species of animals ranging from the beautiful coral reefs in Australia, to the largest animals ever discovered. However, imagine if the oceans were empty, and life no one longer existed underwater. Sadly, this is becoming a reality, and according to marine expert Dr. William Cheung, we are headed straight in this direction.

Continued global warming resulting from our emissions has caused the temperature of surface ocean waters to steadily increase. These rises in temperature have led to a doubling of marine heatwaves, or periods of extremely high temperatures in ocean waters, since around 1982 (as seen in the graph below), in turn significantly affecting all marine life, especially fish.

Large Recent Increases in Marine Heatwaves
Credit: Climate Central, climatecentral.org

Dr. Cheung not only identified patterns of current decline in fish populations as a result of marine heatwaves, but has predicted significant future decline as global warming continues. In fact, Dr. Cheung predicts that populations of common fish species such as sockeye salmon will decrease by more than 40% by 2100. These predictions are based on the assumption that we do not change our current emission trends, which does not have to be the case.

You might not think this, but you, me, and every single person on this planet plays a part in our global warming problem. Everyday decisions such as driving your car can contribute to global warming and have downstream effects in marine environments, as described in the video below.

Although there are new policies tackling climate change, and large progressions made in the right direction, according to Dr. Cheung, this is still not enough. He says,

“We really need to pick up the pace and accelerate the actions against climate change.” 

So what can I do to help?

Fixing a global problem like climate change requires global contributions, and it starts with all of us. Although it might be true that your changes alone wouldn’t stop climate change, if all 7.6 billion people on the planet made one small positive change, the effects would be enormous. The TeamTrees podcast below highlights the many different ways we can start protecting the future of our oceans now.

Thank you to freesound.org (Robinhood76, SomeoneCool15, Simon_Lacelle, Votichez, Sentuniman) for providing the sound effects used in our podcast.

If we are to save the fish and the rest of marine life from these increasingly prevalent marine heatwaves, we need to act now.

~SO Group #3: William, Jessica, Balkaran, Adam

Reusable Grocery Bags… It’s Complicated

I hope you don’t like your groceries in a plastic bag, because that may be a thing of the past very soon! As the world looks to reduce plastic waste, many countries have banned the use of single-use plastic bags – with Vancouver to follow suit by 2021. Greener alternatives—biodegradable or compostable (BoC) plastic bags, paper bags, reusable plastic bags, and cotton totes—have been steadily becoming more popular for many shoppers.

Some alternatives to single-use plastic bags. Adapted from Plastic Education.

But what’s really the truth? How much better are these so-called greener alternatives?

What if I told you that the chic tote you bought for yourself is actually much, much worse for the environment than a plastic bag?

What’s it take to make these bags?

To get a good grasp of the environmental impact these bags can have, we need to look at the full picture. Turns out, the bulk of the environmental impact of these bags come from the production stage. Let’s have a quick overview of how each type of bag is made.

The single-use plastic bag—in all of its environmentally unfriendly glory—is produced from petroleum. The thicker, reusable plastic bags are also made from petroleum, except they require quite more. On the other hand, we make BoC plastic bags from plant-based materials such as starch! Wood pulp is required for paper bags, and of course, cotton (which requires loads of resources) is needed to make cotton totes.

A cotton field. Source: Jimmy Smith, Flickr

So how does this play into the environmental impact?

There are many studies called life cycle assessments (LCA) which examine how a product is made, used, then disposed of. In 2018, the Denmark Environmental Protection Agency conducted a LCA of the different types of grocery bags. For each type, they looked at the total environmental impact (greenhouse gas release, ozone depletion, water depletion, toxicity, and more).

“Greener alternative”… well, no, not really.

The big question is, how many times do you need to use your reusable bags in order to have less impact than if you used single-use plastic bags?

You might want to hold onto your seat. For the total environmental impact, you’d want to use your BoC plastic bags, paper bags, and reusable plastic bags at least 40 times in order to beat single-use plastic bags. And for the cotton tote? You would need to reuse it 7100 times. It’s even higher for organic cotton, since organic crop yields are lower: try 20000 times. If you use your tote three times a week, it would take 45 years (128 if organic) to break even with single-use plastic bags!

It’s intuitive to think that the greener alternatives would be better for the environment. Single-use plastic bags do not break down, and end up in landfills, whereas alternatives could be either biodegradable or used many, many times before they break and become unusable. It goes to show that it’s important to consider not just the disposal of a product, but also the production and resources that go into making it.

For more information, check out this video from SciShow!

 

-Sam Jung

Robots Can Help Children with Autism Learn

About 1 in every  160 children globally has autism spectrum disorder. Most of them face developmental delays such as behavioral challenges and difficulties with social interaction. This makes learning new skills a serious challenge for them, especially in traditional schools.

It has been reported that socially assistive robots can help autistic children learn, but only if the robot can accurately interpret their behavior and react appropriately. In 2020, researchers at the University of Southern California developed a personalized learning robot called Kiwi for children with autism.

Kiwi, a personalized learning robot for autistic children. Source: kcet.org

Kiwi Teaching Math and Social Skills

Kiwi uses math games and an algorithm that monitors the child’s math performance to provide appropriate feedback and change the games’ level of difficulty accordingly.

While the content of the game focuses on math, the main purpose is to teach the kids fundamental social skills through their interactions with the robot, such as turn-taking (is it my turn or Kiwi’s turn to talk?) and eye contact (should I look at Kiwi when I’m talking?). Kiwi also uses data such as dialogue and eye contact to predict whether children are engaged in a given activity. If it detects that the child is not engaged, it tries to re-engage them for an extended period of time. When tested, Kiwi managed to reach a 90% accuracy in predicting the child’s engagement.

Collecting Data from a Realistic Environment

The study is based on the information collected after leaving Kiwi with 17 autistic children for a month in their homes. Participants regularly played the games on Kiwi’s attached tablet. The robot would then give personalized feedback through a reinforcement-learning algorithm. This algorithm enables Kiwi to elicit the best possible feedback by modifying its response based on each child’s reaction in the same way as the study’s lead author describes:

“If you think of a real learning environment, the teacher is going to learn things about the child, and the child will learn things from them. It’s a bidirectional process and that doesn’t happen with current robotic systems. This study aims to make robots smarter by understanding the child’s behavior and responding to it in real-time.”

The following video shows the robot, its interaction with an autistic child, and the researchers’ insights about it:

YouTube Preview Image

Source: NSF|YouTube

Surprising Results

Assessments were conducted for each participant before and after the month-long interventions. The results surpassed the researchers’ expectations of participants’ improvement. At the end of the study, 100% of the participants demonstrated improved math skills; 92% of them also improved in social skills.

Despite having promising results, such interventions are typically inaccessible to most people due to their high costs. The hope is that in the future, such socially assistive robots become affordable and turn into personalized therapeutic companions for all autistic children to improve their development.

I’ll leave you with the following short film telling the story of an autistic boy improving his social skills with the help of Kiwi:

YouTube Preview Image

Source: USCViterbi|YouTube

-Samin Shadravan

Treating Congenital Heart Disease: Lab-created Heart Valves

The world’s most common birth defect, congenital heart disease (CHD), affects around 1 in 100 Canadian children born each year. It is a condition where the heart does not develop or function properly. Some forms of CHD only require medical check-ups, while others, especially among children, are more complex and can require several surgeries. A 2021 research study led by Dr. Robert Tranquillo explains a promising approach using lab-created heart valves that can prevent the need for multiple surgeries when treating various forms of CHD in children.

Source: flickr.com

What is Congenital Heart Disease (CHD)?

Congenital heart disease includes all defects present at birth in one or more of the heart’s structures— valves, arteries, chambers, or wall tissue. Our hearts play an important role in maintaining blood flow throughout the body. Therefore, defects in the heart must be treated for the body to function properly.

Source: CNN | Youtube

THE PROBLEM: CURRENT AVAILABLE TREATMENTS

When it comes to treating heart valve defects, there is still no replacement heart valve that can grow and continue to function as a child grows. As a result, children must undergo multiple valve replacement surgeries. The current treatment uses valves made from chemically treated animal tissue. In addition to children outgrowing these valves, they are also known to become dysfunctional due to calcium build-up. As a result, children will have to endure around five or more open-heart surgeries. This can be exhausting, painful, and inconvenient for both children and their families.

PROMISING ALTERNATIVE: LAB-CREATED HEART VALVES

Dr. Tranquillo and his team have created heart valves that are capable of growing within a patient. In addition, they have almost no calcium build-up and can be stored for at least six months. Although this study was only done on lambs, it holds great potential when it comes to reducing the number of surgeries required for children with valve defects. As stated by Dr. Tranquillo,

“This is a huge step forward in pediatric heart research.”

Below is the echocardiogram showing this replacement valve opening and closing within a lamb’s heart. 

Source: College of Science and Engineering, UMN | Youtube

      How was this done?

The researchers created tubes from the donor sheep’s skin cells using tissue engineering and regenerative medicine. They combined the cells with a gelatin-like material and provided them with nutrients to grow. Following this, they washed away the sheep cells leaving behind tubes. Three tubes were sewn together to create a tri-tube that replicates a human heart valve. The tri-tubes were put into the hearts of three lambs and monitored. After 52 weeks, they saw a significant growth of the valves (19mm to about 25mm), strongly suggesting that the valves grew within the lambs.

THE FUTURE

The next steps are to test whether the lab-created heart valve can function in a child. Dr. Tranquillo’s research, if someday approved in children, could significantly improve the lives of children diagnosed with congenital heart disease, specifically heart valve defects. Overall, this would be a huge breakthrough in pediatric heart care.

– Samantha Nalliah

The Power of Seaweed: How a Small Snack for Cows can have a Big Impact on the Planet

Apparently, seaweed is not just healthy for people, but when given to cows it will be good for the planet. The large amounts of greenhouse gases released into the atmosphere are driving global warming. A significant amount of these emissions are a result of cows belching and flatulating in the amount of around 142.5 million metric tons of methane per year.

Cows Feeding: Source: flickr.com/U.S. Department of Agriculture

Beef and dairy are common sources of nutrition for people all over the world. In Canada alone, the average person eats around 40 lb of beef and drinks 66 L of milk per year. The issue is growing cattle is notorious for its harmful environmental impact due to the methane gas the animals release. Although methane is only 16% of the total human-caused greenhouse emissions, it is much more potent than carbon dioxide (which makes up 76% of the greenhouse gases released), making it an important agent we need to manage. The ecologically harmful process, of producing and emitting methane by cows, is described in the video below created by Laura Beil and Erin Otwell at Science News.

Video Source: Science News | YouTube

It turns out that adjusting cattle feed can greatly reduce the amount of methane they create. A recent study headed by Dr. Ermias Kebreab and his team found that adding a certain type of red seaweed (scientifically known as Asparagopsis taxiformis) to cows’ diet could play an important role in reducing greenhouse emissions. The researchers observed that the more seaweed in the diet the less methane the cows released. In addition, the study tested how different forage (grass and hay) to concentrate (corn and molasses) ratios, in combination with the seaweed, decreased cow methane production. The best results were noted when their diet had lower forage levels (compared to concentrate) and greater amounts of seaweed. This feed combination was measured to reduce beef methane emissions by more than 80%!

The type of red seaweed fed to the cows: Asparagopsis taxiformis: Source: flickr.com/Guilherme Fluckiger

It is worth noting that adding seaweed to the cows’ diet did not change their meat quality. A tasting panel confirmed that steaks were equally delicious regardless of what the cows ate in the study.

Adding seaweed to cow feed is a simple, low-cost, and nature-based solution to a very serious problem. The ability to reduce the amount of methane cows release is great news for the many people who rely on dairy and beef in their diet.

Child Enjoying a Burger: Source: Flickr.com/Anna-Lena Nordin

– Adam Soliman

Dining Out: Are we digging ourselves an early grave?

How often do you find yourself sitting down to eat at a restaurant? Or maybe even taking a detour to your favourite fast food drive-thru? If your answer is along the lines of, “more often than I’d like to admit”, then it’s time for some serious reflection. A recent study led by lead investigator, Wei Bao, from the Department of Epidemiology at the University of Iowa linked frequent consumption of away-from-home meals to an increased risk of all-cause death 

Eating Out – How Often and Why (adapted image). Source: Statistics Canada

The downside of dining out

It should come as no surprise that the dietary quality of meals from restaurants and fast food chains fall below home-cooked meals. You may have noticed that serving sizes at restaurants are quite large. Due to this, people have no way of controlling their calorie intake and the risk factor for obesity increases as well. In addition, fast food meals are usually high in sugar and sodium. Meals with added sugar are not only addictive but low in nutrition. It’s quite evident how addictive McDonald’s fries are and that may be due to them being coated in dextrose, a form of sugar. Meals high in sodium cause water retention which in turn can make you feel bloated and can also elevate blood pressure which puts stress on your heart. Most fast food meals also contain a large amount of carbohydrates. The video below called “How do carbohydrates impact your health?”, by the TED-Ed Youtube channel, explains what carbohydrates are and the downside of eating too many.

It gets worse

The dietary quality of food away from home is not exactly top tier but the problem does not end there. Recent evidence has also linked this poor dietary quality to an early death. Lead investigator Wei Bao’s study is one of the first to put in numbers the connection between eating out and mortality. The findings from this study built on previous knowledge, similar to what was discussed above, of how eating out often has negative impacts on our health. There were 35, 084 participants from this study that reported their dietary habits, such as how often they were dining out, in a questionnaire. During the follow-up with these participants, 2,781 deaths occurred. From this number, 511 deaths occurred from cardiovascular disease and 638 deaths occurred from cancer.

Sharpen those culinary skills 

The fact that dining out frequently is not only unhealthy but is now linked to an early death should be a wake-up call for those of us that rarely eat home-cooked meals. The best recommendation for avoiding severe health problems would be to reduce the amount of meals we eat prepared away from home and instead sharpen our own cooking skills to prepare meals at home. Additionally, restaurants should practice portion control and reduce the serving sizes of their meals as another study has proposed. Hopefully, with this information, you’ll listen to your parents when they say “there’s food at home”.

– Ramdeep Dosanjh

Plastics: Why They Are Bad, and a New Plant-Based Solution!

From water bottles to cigarette butts to straws, plastic has become an important asset to many of the products and appliances that we use today. However, with the huge influence that plastic has on the manufacturing industry, comes the potential destruction of the environment. Luckily, a study conducted by Mecking and others discusses the invention of a new plant-based plastic that can potentially fix this problem!

why are plastics bad?

Most of the plastics that are used today are manufactured from petroleum, which is a fossil fuel that is formed when dead organisms are broken down throughout millions of years. Then, petroleum is converted into a type of material that is unrecognizable by the organisms that normally break down products like petroleum. This results in plastics that decompose very slowly, or do not decompose at all. These plastics tend to accumulate and end up in landfills and incinerators, or even worse, dumped into the environment.

“Plastic Ocean” by Kevin Krejci is licensed with CC BY 2.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/2.0/

what about recycling?

There are two types of plastics that need to be addressed. The first type is thermoset plastics. These are plastics that are not recyclable. The second type is thermoplastics. These are plastics that can be melted into smaller parts and re-formed into different plastics. This is the process that we call mechanical recycling. However, every time these plastics are recycled, their quality starts to decrease. In fact, a piece of plastic can only be recycled 2-3 times before it reaches a point where it can no longer be used!

plant-based plastic to the rescue

A solution to this imperfect recycling procedure is to utilize a new recycling method known as chemical recycling. This is a process that breaks down plastics at the molecular level, which can then be used to create other materials without a decrease in quality.

Check out the video above by CNBC for more information on chemical recycling!

 

In Feb 2021, a paper was released in Nature by Mecking and others, discussing the invention of a new plant-based type of plastic. Rather than using fossil fuels such as petroleum, this type of plastic is composed of plant oils. This plastic can utilize chemical recycling at a much more efficient rate than what is originally possible.

Normally, chemical recycling of fossil-fuel-composed plastics requires a lot of energy; temperatures above 600 degrees Celsius are required and only 10% of the plastic can be utilized for other materials. In comparison, their new plant-based plastic only needs to heat to around 250 degrees Celsius and can utilize up to 96% of the original material!

Stefan Mecking, the lead author of the study, acknowledged in an interview in the Academic Times, that their new plastic would have a hard time competing with the cheap cost of ethylene. Hopefully, with further refinement, Mecking and his team will be able to lower the price point of their plastic to a level that is suitable for the plastic industry.

– Aaron Yoon

The Space Junk Crisis

You likely don’t think about space junk very much every day, but what if I called it an orbital death sphere? Although this may sound hyperbolic, the current amount of orbital trash may become a serious crisis very soon. So what is space junk, and what are we doing about this death sphere?

Space Junk, Space Debris, Orbits, Space, Universe

Source: pixabay.com

Our Orbiting Landfill

Humanity has now been launching things into space since Sputnik 1 was launched in 1957. Since then, we have launched thousands of satellites into the earth’s orbit. Now, launching a rocket is an incredibly difficult task, so historically we have put all our efforts into getting them out of the atmosphere. A consequence of this mentality is that few launches have planned for what happens with the payload once it has served its use. This has resulted in a graveyard of satellites circling earth. But why should we care about a space graveyard?

Sputnik, Satellite, Astronautics, Nasa, Cosmonautics

Source: pixabay.com

The Death Sphere 

Orbiting space junk is moving at thousands of kilometers per hour. This means that some of our space junk is traveling more than 10 times faster than an average bullet.

The real problem comes from orbital collisions. If two satellites happen to run into each other in orbit, the collision could result in thousands of smaller “bullets”. In addition to this, this single collision could cause a cascade of collisions.

This process is known as Kessler Syndrome which is named after the rocket scientist Donald J. Kessler who first realized the possibility. The end result of this cascade is a proverbial “death sphere” which describes a field of small debris encircling our planet. This could trap us on this planet, as any attempt to launch something into space would be met by a stream of destructive debris. A more complete picture of how this happens is shown by the YouTube creator Kurzgesagt – In a Nutshell: 

YouTube Preview Image

So how do we prevent this from happening? Well thankfully people have started coming up with some solutions.

Saving the Satellites 

Attempting to clean up our space junk is a very difficult but necessary task. A recent study published by the International Academy of Astronautics found that the risk of a catastrophic impact with space debris is as high as 45% for  projects such as SpaceX’s new satellite. Furthermore, the study went on to say:

“…(Kessler Syndrome) could result in low Earth orbit (LEO) becoming unusable, and remaining in an unusable state for perhaps thousands of years…” (IAA)

Getting to space in the first place is incredibly difficult, and if you can get to space how do you get so much junk out of our orbit? Well, many very unique solutions have been proposed over the years including giant trash catching nets, shooting puffs of air at the junk, and even sending up little janitor robots. Most of these solutions have only been theoretical, until this morning.

File:Elsad.png

Source: Astroscale Holdings Inc.

Earlier today, a magnetic junk capturing satellite was launched by the Japanese company Astroscale. This fascinating piece of engineering uses powerful magnets to capture metallic debris, and safely remove it from orbit. Projects like this give us hope that we will not be restricted in our space fairing ability in the future. Hopefully we can be rid of our orbiting garbage before it grounds us for good. 

-Declan O’Driscoll