A Big Thank you

Dear class,

This week marks our official last week of class.

I’m honored to have been a small part of a lifelong journey of discovery and experimentation in the arena of digital technologies in math and science education. For me, it has been intellectually engaging and insightful to learn about you and your thoughts on teaching and learning challenging concepts in the math and science classroom. The growth in scholarship and pedagogical design has been laudatory as it has involved the merging of practice, experience, design, and theorizing.

We began this journey with our personal experiences of using technology.  These experiences often produced a shared nod and a chuckle at times as we recognized a common experience with technology. In analyzing our experiences, we were also able to unpack our assumptions of what good teaching with digital technology looks like and how we might teach with technology. We viewed video cases of others using digital technology in a variety of contexts, and from our examination of them, crystallized a salient issue of personal interest.  We also saw Heather in the Private Universe and learned about her powerful alternative conceptions about the solar system, prompting us to think about how we arrive at our personal conceptions and how enduring these early conceptions can be. This reflection launched seminal readings of the scholarship of Paul Cobb, Ross Driver, and Posner et al. who have articulated the fields of math and science education and conceptual understanding significantly. We read their work as we grappled with alternative conceptions we have witnessed with our students. This and other issues involving technology were explored further in in-depth interviews with our colleagues. Sharing excerpts from these interviews allowed us also to see that our educational settings shared some commonalities with each other as patterns began to emerge across contexts. Using research, we were able to frame these issues, in the form a cogent annotated bibliography. Many of these bibliographies were exceptionally concise at framing the issue relevant to STEM and using empirical research to deftly analyze it. For some, unexpected answers to long-standing questions were found. For others, the issue was personally salient but had never been explored using research before. A number of students who have previously graduated from this course have used their annotated bibliographies to inform papers, grants, district technology proposals, and future theses.  The next module focused on instructional frameworks that allowed an examination of multiple ways that such conceptions might be addressed. With a TPACK and PCK lens, four established frameworks were examined: AI, SKI, LfU, and T-GEM. We went into depth into this research. The breadth of these well-established projects also allowed us to examine affordances and STEM topics such as: pedagogical content knowledge (or how we teach particular topics in science and math), math for children with learning disabilities, various ways to scaffold inquiry and provide good feedback, and multiple levels of external representations and abstraction (symbolic, macro and micro) that are prescient in simulations.  We also looked at “pedagogical design” with multi-step coordinated approaches, sometimes using the technology (eg. WISE, GIS) or integrating other activities without it, depending on the goal of the teacher. Our foray into pedagogical design prompted a (re)consideration of the roles of the teacher and the students as being key to learning. With these vital roles in mind, we were able to design guided lessons and activities based on these frameworks in lesson 3. Syntheses of the frameworks were insightful as they each have something to offer. Looking back at earlier posts on technology, there was visible growth in our understanding of how technologies can be thoughtfully integrated with purposeful decisions about interaction with students; I very much enjoyed reading the activities you created in this module. Our final module embarked upon an exploration of embodied learning, mobilization knowledge, and the visualization of information with digital technologies for STEM. We discussed embodied learning research and explored how the body can move to learn math concepts involving shapes, rate of change, or concepts such as molecular motion. Our discussions on embodied learning allowed us to imagine how we might use mobile technologies with probes, graphing calculators, augmented reality, VR headsets and motion-aware technologies, and current mobile apps to name a few. Then, we explored the social construction of knowledge as it diffuses and is mobilized over virtual networks. Through this exploration, we had fun visiting online exhibits about bugs and mathematical conundrums at museums, traveling to ponds in Africa and across Canada in expeditions, viewing weather data from thousands of children in schools near our backyard and close to Antarctica with Globe, and diving to immersive games.  Benny’s conceptions, math in the streets, when the problem is not the question, and constructing scientific knowledge using guidance provoked us to think deeply about how we engage children in a dialogue with us, their peers, and their world about mathematical and scientific concepts. Finally, we explored how concepts can be visualized in math and science education with simulation and modeling programs, like NetLogo, GS, Illuminations, and PhET. You were able to share initial ideas for possible activities that integrated simulations and other forms of information visualization. Well-thought out multi-step and multi-cyclical approaches were generated for us to address challenging concepts in math or science. These designs of technology-enhanced learning experiences were further enriched by roles for teachers and students as they interacted with each other and the technology in a cognitive process to co-construct mental models. By the time this module will be over, we would have examined over 25 free on-line digital resources for science and math education. We also created a forum for sharing resources and it grew to include a number of technologies for our community of learners to try now and in the future. Your posts have been incredible for me to read as a number of you tried your TELEs out in the classroom, and many of us will be trying out the wonderful ideas for TELEs in the year to come.

As the course culminates this week, in many ways, your journey of education on teaching and learning with technology continues beyond it. Thank you so much for your participation, engagement in the material, and willingness to learn. You are an immensely talented and insightful group of educators. You do important work and have much to offer children and young adults with each interaction. Your journey doesn’t end here as your explorations for teaching math and science have also impacted each of us in positive ways and, in turn, our own students. On a personal note, I must let you know this was the most gratifying class I have taught (and I have never told a class that before). I told someone today that if I could continue teaching this group all year, I would. You were an amazing group of learners came together in the best way as a supportive community. Every week I looked forward to the gems in your understanding and trials and thoughts on technology. I have truly enjoyed this class as one of my best teaching experiences, and I must thank you so much. I would like to invite you to visit if you are ever in Vancouver. My email is samia.khan@ubc.ca. Please feel free to share your contact info here if you wish to stay in contact. With great thanks for sharing this journey with me; I wish you all the very best now and in the future in education.

With a great many thanks, Samia

One comment

  1. Thank you for your continued insights and support, I did not participate as much as I would have liked to, but this class definitely taught me a lot and left me with many issues to contemplate.

    Thanks again,

Leave a Reply

Your email address will not be published. Required fields are marked *