Monthly Archives: July 2017

Exploring the Circulatory System Through T-GEM

To launch the beginning of our units of inquiry in Grade 5, we begin by exploring the big idea of Multicellular organisms have organ systems that enable them to survive and interact within their environment. Before students begin to piece each system together, to understand the interrelatedness we explore each system in isolation, while providing opportunities for students to write and generate questions when hypothesis to connections occur. Students participate in the inquiry cycle by finding out, sorting out, making connections to information. When exploring the form and function of the circulatory system, and the human heart, many students struggle with understanding how oxygenated blood is transported throughout the body, and in particular are often confused by the use of blue blood on models to represent deoxygenated blood. The following 3-Step T-GEM cycle is included below to explain how digital technology supports student understanding.

GENERATE

During the first phase of the T-Gem Model the teacher provides opportunities for the students to express their understanding. Students are given a blank model of the human body to record their knowledge and predictions of the circulatory system, including veins and the heart. Students then watch the Brainpop video on the Circulatory System to record additional information.

Students generate ideas about what they know regarding the circulatory system by labelling the blank human body template. Students then have opportunity to share their ideas in a gallery walk first, then in small groups of 3-4 students. Students discuss, compare, and explain concepts and questions.

EVALUATE

After watching the brainpop video on the circulatory system, as well as investigating the heart and circulatory through the Heart | 3D Atlas of Anatomy app allow to spin a highly realistic 3D heart model as it was in user hands.

As a class, we discuss our initial predictions and human body diagrams.

Working in small groups of 2, students evaluate what they now know about the circulatory system. Teacher circulates and provides an opportunity to discuss and guide student inquiry. Opportunities for the GEM cycle occur.

MODIFY

After exploring the videos, working through the 3D Atlas of Anatomy apps, including the dissection options, as well as class discussions, students are then able to go back and sort out their new knowledge by redoing their human body template.

Students redo their human body template based on discussions with the teacher and classmates. As an extension, students can work with the EdTech teacher using the 3D school printer to create their own model of the human heart. Students complete a reflection piece to solidify their learning journey, accounting for all growth in understanding.

References

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Khan, S. (2010). New pedagogies for teaching with computer simulations. Journal of Science Education and Technology, 20(3), 215-232.
Khan, S. (2012). A Hidden GEM: A pedagogical approach to using technology to teach global warming. The Science Teacher, 79(8). This article was written about T-GEM with middle-schoolers.

Torque and Bench Press Design

In Physics 11 the concept of torque is often quite easy to calculate but, from my experience, is not something that many students fully understand.  The implications of torque are enormous in engineering but also have real world applications for our students.  Many of our students have been on a ‘teeter-totter’ and experienced the effects of leaning back to go down faster.  I would present students with the problem of a loaded bench press (4-45lbs plates a side) and ask their thoughts on how many plates I can take off one side before the bar flips.  The intention of using this example is it would relate to my students and would have them think about torque in their daily lives.

I would use the following question to guide the inquiry process:

How can we explain the gym using physics? What is the safest design of a bench press to prevent weight tipping?

The question is intentionally broad as there is no single answer to it.  We will approach it through the lens of torque (and can revisit from other angles as we see fit – pulleys etc).

 

Phase of Instruction Teaching Method Student Activity
Generate Relationship Show students a picture of a loaded bar with 405lbs and ask how many 45lbs plates can be removed from one side before the bar flips.  This is a complex question as the pivot point is very close to the heavier side.  Ask students what they think will happen if a smaller bench press is used and the anchor points are closer together (the pivot point would be further from the weight). Students hypothesize what is going to happen, explore bench press design, design a bench press to minimize weight tipping yet is still usable and compare their results with others in the class.  
Evaluate the relationship Take the class to the weight room and recreate the situation and see what happens (teacher led – be careful!)

Have students complete the PhET simluation (https://phet.colorado.edu/en/simulation/balancing-act) on tourque and balance.

Students test their theory with what actually happens and are given time to work with an unloaded bar (Safely!!) and see how position and pivot point effect when the bar will tip.  Students capture their experiment using their devices and explain their findings in a video journal.
Modify the relationship Other implications and extensions of where these theories of physics apply are covered (structural engineering, mechanical engineering) Students modify the design of their own bench press with detailed explanations of their design choice and answer the driving question.

Any thoughts or suggestions on the design process or the guiding questions?

Baljeet

 

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Khan, S. (2010). New pedagogies for teaching with computer simulations. Journal of Science Education and Technology, 20(3), 215-232.

Forces and T-Gem

In Grade 5 science we learn about forces and how they multiply or change direction. Students easily understand that something makes it hard to push a box across the floor but the idea of different forces changing the effect is hard as the forces are not visible. Through the use of the PhET simulator students are able to interact with different forces and as Khan identifies “[i]n dynamic situations, mental models can be manipulated and transformed on the fly through simulation and provide predictive and explanatory power for making sense of the familiar and the unfamiliar.” (Khan, 2007, p 879)

T-GEM and Forces

 

Sorry the image is so small, but if you click on link below you can see it in a readable size:)

T-Gem Image

References:
“Building Student Success – BC’s New Curriculum.” Curriculum.gov.bc.ca. N.p., 2017. Web. 9 July 2017.
“‪Forces And Motion: Basics‬ 2.1.4.” Phet.colorado.edu. N.p., 2017. Web. 9 July 2017.
“Force And Motion – Bill Nye Clip.” YouTube. N.p., 2017. Web. 9 July 2017.
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Pythagorean Theorem

Grade 8 Math: Pythagorean Theorem

 One of the challenges I have encountered when teaching mathematics to Grade 8 students is their understanding of the Pythagorean Theorem. They are able to quickly memorize the “equation” but struggle with the conceptual understanding of the theorem. I have noticed that when students are given an equation they can usually solve it, but when given concrete objects or visuals they struggle. They also have the misconceptions that the Pythagorean Theorem applies to all triangles, and that the longest side of all triangles is the hypotenuse. I want to move students from general memorization to conceptual understanding.

B.C. Math 8 Content (2015):

Sorry for the small visual: details are below….

 

3 step T-GEM:

Generating:

Explain that we are going to be discovering the Pythagorean Theorem. As a class, generate ideas about properties of squares (area, angles, special properties, side lengths, etc.), by accessing students’ prior knowledge – things that the students have been learning about over the years. I want them to make connections to what they already know and prime them for the new information to come. Have them work back – if you know the area of a square, how can you find the side length of that square? Have them generate ideas around this basic concept in partners and then share out. Explore the idea of square root.

Show students a visual of a right triangle. Ask students to speak to different properties of this right triangle. Attend to any new vocabulary (legs, hypotenuse).

Share short Water Demo to get students interested: https://www.youtube.com/watch?v=CAkMUdeB06o

Ask class to give feedback on video. What did they notice?

Evaluating:

 Teacher asks students to discover and then investigate properties of right triangle and the Pythagorean Theorem. Students will use Gizmos (explorelearning.com – account required) computer simulation to further explore the Pythagorean Theorem. Students are able to “manipulate the model to view how it behaves under various conditions, and the outcome of these changes are made visible…” (Khan, 2010, p. 216). Student understanding is documented and shared with the teacher through this program.

Modifying:

Students will summarize and reflect on their understanding and apply this understanding in a different scenario. In a Makerspace or Woodwork setting have students apply the Pythagorean Theorem through carpentry (3-4-5 Rule) or mapping or canoeing activity from a First Peoples perspective (FNESC, 2008).

References

British Columbia Ministry of Education (2015). Mathematics 8. Retrieved from https://curriculum.gov.bc.ca/curriculum/mathematics/8

First Nations Education Steering Committee – FNESC (2008). Teaching Mathematics in a First Peoples Context: Grades 8 & 9. Retrieved from  https://teachbcdb.bctf.ca/download/271?filename=math-first-peoples-mapping-and-transportation.pdf

Khan, S. (2010). New pedagogies for teaching with computer simulationsJournal of Science Education and Technology, 20(3), 215-232.

 

 

 

SaveSave

Rocketry and Resistance

Noticing the effects of air resistance is easy.  Predicting the effects of air resistance on the motion of an object, however, is mathematically complex and beyond the scope of high school.  In Physics 11, students are introduced to motion without the effects of an atmosphere to keep it simple but highly unrealistic (especially for really fast things like bullets or rockets).  After years, my question is why even bother?  The students effectively learn that physics is only true in books and exams which only solidifies the separation between their informal and formal learning. Empirical tools can do an excellent job of modelling real motion of particles in an atmosphere while also introducing authentic challenges in science, which is more compelling for students (CTGV, 1992a).  The partial sacrifice is the simple analytical math part of the model.

The diagram below summarizes a T-GEM approach to a Compressed Air Rocketry project in which students are given the challenge of designing a rocket that will fly as far as possible on a short blast of air.

The project incorporates the affordances of social learning and making learning visible (Linn, 2003).  Students work iteratively in teams, making their learning visible through diagrams, group meetings, and presentations.  Three e-learning resources are needed for this:

1)  a camera with 60 fps or higher (most phones and all iPads)
2)  access to PhET Projectile Motion online simulator  https://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html
3)  Access to the freeware program Physics Tracker http://physlets.org/tracker/

Special attention should be paid to helping the students collect quality data, where scaffolding is necessary, or the evaluation part of the activity will collapse. Rich scientific data collection is not a teenage instinct!  On that note, Khan’s study references “experienced science teachers” so often that I am left wondering–is it implied that T-GEM as a framework is difficult to wield without appropriate experience or deep grounding in TPACK?

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Khan, S. (2010). New pedagogies for teaching with computer simulations. Journal of Science Education and Technology, 20(3), 215-232.

Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.

Struggling through unseen forces of motion

In grade 2, a challenging concept for students is ‘forces influence the motion of an object’. This is a Big Idea in BC’s new curriculum for grade 2 (BC Ministry of Education, 2015). Through observations, experiments, and evidence of student learning, it is clear that many students struggle with the concept of force and motion because they hold faulty beliefs derived from living in a world where unseen frictional forces operate (White, 1983). For example, in a grade 2 unit we learned about ‘push and pull’, specifically how force always occurs in pairs, Newton’s third law. After many lessons, videos, and examples, one student came to me and said, “If I push a door open, it’s pushing me with the same force? How can a door push me?”

A digital technology that can work to improve this concept is STEAM, an app that teaches the basics of force and motion. The app uses simulation to help students investigate force and how it affects motion. Students can use the simulation to work through the main concepts with 4 different interactive lessons. I would like to use this next year with my grade 2’s in partnerships. (http://www.teachthought.com/the-future-of-learning/technology/steam-app-forces-motion-simulation/).

In my design of a 3-step T-GEM cycle for this concept, I wanted to include student observations and investigations on force and motion, as well as iPad use with the STEAM app for digital experiments.

Generate:

I would have students use a KWL chart (Know, Wonder, Learn) to fill out what they already know, or think they know about force and motion. Then I would have them compare in small groups. This will be used as an assessment tool for me as well to see what their pre-existing beliefs are, as well as to see the growth in their learning at the end of the unit. As a class we will watch the introduction Brain Pop Jr videos to force and motion. Students will share what they think the relationship is between force and motion. In partnerships, students will predict, compare, and explain different examples of force in a hands-on activity.

Video from BrainPopJr. https://jr.brainpop.com/science/forces/pushesandpulls/

Evaluating:

Students will test their predictions in a hands-on activity. Students will use the STEAM app to investigate force and motion. Students will compare their predictions and observations after both hands-on experiments and virtual experiments. Students will come up with “I wonder” questions to help further guide their inquiry. As a class, we will work through a number of picture books to reinforce the concept of force and motion, as well as incorporate different visual videos. Computer simulations enhance concepts and allow students and teachers the opportunity to view visual representation  in more concrete ways which may lead to more accurate conceptual understandings (Khan, 2011).

Students will take pictures of their experiments to later document in Book Creator.

Modifying:

Students will use Book Creator app on the iPads to reflect on their observations, taking into consideration their original predictions. Students will share their books with the rest of the class. As a full class we will discuss their observations, ideas, and further questions. Structured inquiries will occur to help guide and prevent any misconceptions surrounding the concept of force and motion to answer any “wonder” questions that were not answered.

References:

Khan, S. (2007). Model-based inquiries in chemistryScience Education, 91(6), 877-905

Khan, S. (2010). New pedagogies for teaching with computer simulationsJournal of Science Education and Technology, 20(3), 215-232.

White, B. Y. (1983). Sources of difficulty in understanding Newtonian dynamics. Cognitive Science, 7(1), 41-65. Doi: 10.1016/S0364-0213(83)80017-2

LFU & Human Migration Data

What I really liked about this week’s reading was the direct connection between Edelson’s Learning-for-use technology-supported design framework and the parallel with IB Inquiry based curriculum. Edelson notes that for learning to take place, students need to construct meaning. The constructivist approach to teaching and learning is research based and clearly best practice when it comes to engaging students in the learning process. Edelson continues to note that”Knowledge construction is a goal-directed process that is guided by a combination of conscious and unconscious understanding goals.” This to me is exactly what backwards by design thinking includes, teachers and students need to know what exactly they are working towards. Often students are working towards completing projects where they have a general idea of what they need to do, but the most important part is their unconscious understanding of what needs to be found, explored, and only occurs as they continue through the inquiry cycle. Edelson also points out that “the circumstances in which knowledge is constructed and subsequently used determine its accessibility for future use” and “Knowledge must be constructed in a form that supports use before it can be applied.”
When the 3 steps for learning-for-use are woven into the inquiry cycle, student investment in their search for understanding grows. Students as Edelson state require motivation, knowledge construction, and links to previous knowledge.

Understanding the framework lends itself to the IB model of inquiry based instruction, where students guide their curiosity towards understanding. I would consider using this design framework for my migration unit. Not a typical science or math unit, but I see the value in using the My World GIS when connecting math concepts such as distance, longitude and latitude, and overall geographical understanding when students are exploring the patterns of human migration. When students can explore the patterns, areas, and go further in their search for data and understanding do they then become motivated to find out their missing information. This would be particularly useful when students are working towards their summative assessment and then can explore the specific geographical pathway of their ancestors or major groups of migrants. I found it interesting the My World GIS is also partnering with the University of Illinois to teach American History, and bringing Historical Census Data Alive. As Perkins (2010) states, “A spatially literate workforce and citizenry able to access, manage, visualize, and interpret information, also capable of multidimensional thinking, are vital to advance science and technology and address the world’s complex problems.” Therefore, through this hands-on tool, students are not only motivated to construct knowledge, but they are curious to explore the links to previous knowledge of their family and relatives, making the connection to learning even more meaningful. Perhaps with a personal connection to the hard realities of mass human migration, especially today, will students begin to take meaningful action.

References

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.

Perkins, N., Hazelton, E., Erickson, J., & Allan, W. (2010). Place-based education and geographic information systems: Enhancing the spatial awareness of middle school students in Maine. Journal of Geography, 109(5), 213-218.

GIS & Inquiry

Edelson (2001) discusses the overwhelming pressure for inquiry to be built into science classrooms. He mentions that one of the pushbacks from educators that are finding inquiry difficult in the modern day classroom is the lack of time. While I can certainly understand that time is precious and not overly plentiful, I think this is where educators need to be especially saavy. Combining curriculum expectations and designing a unit that brings science, math and language together in one unit will help teachers jump the hurdle that is time. Solely dedicated time to science and science alone is not realistic and I can see why some educators are having difficulty with the concept especially when educators are being asked to “teach more content more effectively, [and] devote more time to having students engage in [inquiry] practices” (Edelson, 2001, p. 355). Edelson (2001) continues to say that another problem in schools is the fact that computers are placed in classrooms but educators are not shown how to use them to their benefit.

The same can be said for other technology or programs that are available to educators nowadays. There are endless amounts of programs (including My World GIS, ArcGIS & WISE) that can be used for science inquiry in classrooms but the education to educators is not being provided. Again, this raises the issue of how, or rather when, educators are to teach themselves these programs? Should this be done in their free time or during PD? The Perkins, Hazelton, Erickson & Allan (2010) article discussed a study on GIS systems and how they can be used in classrooms to increase spatial sense in students. They mentioned how the teachers at this particular school where specifically given a day-long workshop, presumably on a Professional Activity Day, to be trained in the Schoolyard Tree Inventory My World GIS curriculum.

This is a true concern for educators and should be taken seriously by boards that are pushing certain expectations, such as more inquiry with technology in classrooms. If boards want certain methods to be used in the classroom, they must back it up with mandatory training for teachers that will allow educators to feel comfortable with the programs so that they can teach students without feeling uneasy about doing so. When specific time is given to educators to learn certain platforms, wonderful learning can exist and therefore be transmitted to the classroom setting for students to be engaged with.

Reading the articles and learning more about GIS helps me to start forming ideas for my final project. Next year I will be teaching Grade 1 and would love to do an inquiry unit on living things that include humans, plants & animals. Utilizing the LFU principles from Edelson (2001),Motivation, Knowledge Construction, and Knowledge Refinement, we could use GIS such as Google Earth to explore different ecosystems in and around our community bringing the outside into our classroom. We could specifically look at an endangered species in our area using GIS-mapped natural heritage areas such as the Dundas Valley, where my school is located. Utilizing GIS will help us to narrow in on where this species is located and help us establish what can be done to protect it.

I would love to utilize the outside on a daily basis, money and time restrictions do not allow for it. That being said, if by utilizing Geographic Information Systems in addition to other technology that would allow for me to bring the outside in, I can engage my students and create relevant learning.

 

References

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385.

Perkins, N., Hazelton, E., Erickson, J., & Allan, W. (2010). Place-based education and geographic information systems: Enhancing the spatial awareness of middle school students in Maine. Journal of Geography, 109(5), 213-218.

 

LfU – an application for pelvic anatomy?

According to Edelson (2001), LfU is based on 4 theories of learning, which are:
1) learning takes place through construction and modification of knowledge structures
2) knowledge construction is a goal-directed process, guided by a combination of conscious and unconscious understanding of goals
3) circumstances in which knowledge is constructed and subsequently used determine its accessibility for future use
4) knowledge must be constructed in a form that supports use before it is applied.

These principles underlie the LfU model, which is a three-step process involving
1) motivation
2) knowledge construction
3) knowledge refinement

In terms of technology, it plays many important roles within the LfU model. For example, it can play a role in eliciting curiosity (motivation), help students interactive with phenomena not possible in the real world which aids with knowledge construction and refinement.

So how would I apply it to a topic that I teach? The one thing that comes to mind is pelvic anatomy. Students tend to struggle with pelvic anatomy because it is quite complex and has multiple layers to it. I would start off by presenting students with a case of a patient who underwent surgery and shortly thereafter developed leg weakness and pain (this is actually one of the patient that presented to me early in my career). I would then have the students come up with theories based on their current knowledge level, regarding the cause of this pain/leg weakness. This is to draw their attention to their current level of knowledge and to have them recognize their limitations and thus increase motivation to learn. This would also create a context in their memory for integrating new knowledge (Edelson, 2001). Then I would use AnatomyTV, which is an interactive 3D anatomy resource (available through UBC at http://resources.library.ubc.ca/page.php?id=888) as my software of choice. This interactive resource that allows students to manipulate the body in 3D (select 3D Atlas —> Pelvis, then click female pelvis and perineum ~ tumble under 3D views from menu on the left to try it out!), which is really helpful, as most textbooks only present the learner with the upright position of the human body. This is not practical because in most gynecologic clinical practices, we examine patients and operate on them in the supine position, and thus knowledge of anatomy in this position is much more applicable. This program also allows the user to strip away all layers of the body and add them one by one, which allows students to understand how each layer relates to the other. I would also have student work in small group to promote interaction and discussion as this also aids in knowledge construction and refinement. Finally, I would have the students reflect on their initial theories, make any changes they feel are needed and present it as a group to the class and further apply their new knowledge to come up with a management plan for the patient. In this way, I believe I have applied the LfU principles to this topic.

References
1. Edelson DC. Learning‐for‐use: A framework for the design of technology‐supported inquiry activities. Journal of Research in Science Teaching. 2001;38(3):355-385. doi:10.1002/1098-2736

Intrinsic motivations

  • In what ways would you teach an LfU-based activity to explore a concept in math or science? Draw on LfU and My World scholarship to support your pedagogical directions. Given its social and cognitive affordances, extend the discussion by describing how the activity and roles of the teacher and students are aligned with LfU principles.

My World seems like a very useful tool to teach geography using technology in a classroom.  Similarly, Google Earth shows to have similar potentials as well. Both great tools to use when teaching LfU based activities. It is very easy to see how these tools would be effective in math or science lessons. I, myself, used Google Earth in ESL to teach a bit of geography as well before. It gives students a chance to “see” the world without having to actually physically go to the place. Especially useful, when I was teaching students about the Wonders of the World,  Google Earth gave me a chance to show students real-life up to date photos in 2D and 3D of the great wonders which was better than regular photos, searchable online. I also used such tools to demonstrate the concept of distance to my ESL students before, when introducing countries to them, and where their country is located.  To visually show them the relative distance. These tools serve the function of motivating and engaging students to learn from their own curiosity.

If I was to apply similar Learning for Use activities in math or science, I would likely use the tools as a database of current information that students can gather from to produce results. It seems like using such tools, serves the purpose of data analysing more than presenting a concept, to be a tool to help students make connections more than anything else.  As Edelson stated “The LfU approach recognizes that for robust learning to occurthe learner must be motivated to learn the specific content or skills at hand based on a recognition of the usefulness of that content beyond the learning environment” (Edelson, 2014).  

My science LfU lesson could possibly look at using the data provided by these tools to make comparisons to present a concept. For example, the size of a country in landmass,  population,  and location. Explore why certain areas on the globe would be more ideal for agriculture, and some not. Why population varies greatly between big cities?  Have the students pick countries of their own interest to answer their own questions. My lesson would likely be climate/science related but would probably connect with socials studies as well. Teachers in the lesson would most likely be the facilitators or be a researcher like the students as well.

Reference:

Bodzin, A. M., Anastasio, D., & Kulo, V. (2014). Designing Google Earth activities for learning Earth and environmental science. In Teaching science and investigating environmental issues with geospatial technology (pp. 213-232). Springer Netherlands.

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.