Author Archives: gene lee

The Effect of Mobile Device Management on Work-from-home Productivity: Insights from U.S. Public Firms

Park, Jaecheol, Myunghwan Lee, Gene Moo Lee “The Effect of Mobile Device Management on Work-from-home Productivity: Insights from U.S. Public Firms”, Work-in-Progress.

  • Presentations: UBC 2023, MSISR 2023, KrAIS 2023, WeB 2023, AOM 2024
  • Best Paper Nomination at WeB 2023
  • RA: Chaeyoon Kim

The use of mobile IT, providing employees with accessibility, flexibility, and connectivity, has become increasingly vital for businesses, especially for work-from-home during the COVID-19 pandemic. However, despite its prevalence and importance in the industry, the business value of mobile device management (MDM) and its role in establishing digital resilience remain underexplored in the literature. To address this research gap, our study examines the effect of MDM on a firm’s resilience to the pandemic. Drawing on the resource-based view (RBV), we find that firms with MDM have better financial performance during the pandemic, demonstrating greater resilience to the shock. Additionally, we explore the moderating role of external and internal factors, revealing that firms with high environmental munificence or those with low IT capabilities experience greater resilience effects from MDM. Furthermore, we observe heterogeneous effects across industries that firms in industry sectors demanding greater mobility have a greater resilience effect from MDM. This study contributes to the information systems literature by emphasizing the business value of MDM and its crucial role in building digital resilience.

Myunghwan Lee’s PhD Proposal: Three Essays on AI Strategies and Innovation

Myunghwan Lee (2023) “Three Essays on AI Strategies and Innovation”, Ph.D. Dissertation Proposal, University of British Columbia. https://sites.google.com/view/myunghwanlee/home

Supervisor: Gene Moo Lee

Artificial Intelligence (AI) technologies, along with the explosive growth of digitized data, are transforming many industries and our society. While both academia and industry consider AI closely intertwined with innovation, we still have limited knowledge of the business and economic values of AI on innovation. This three-essay dissertation seeks to address this gap (i) by proposing a novel firm-level measure to identify strategically innovative firms; (ii) by examining how firm-level AI capabilities affect knowledge innovation; and (iii) by investigating the impact of robotics, embodied AI with a physical presence, on operational innovation.

In the first essay, we propose a novel firm-level measure, Strategic Competitive Positioning (SCP), to identify distinctive strategic positioning (i.e., first-movers, second-movers) and competition relationships. Drawing on network theory, we develop a structural hole-based, dynamic, and firm-specific SCP measure. Notably, this SCP measure is constructed using unsupervised machine-learning and network analytics approaches with minimal human intervention. Using a large dataset of 10-K annual reports from 13,476 public firms in the U.S., we demonstrate the value of the proposed measure by examining the impact of SCP on subsequent IPO performance.

In the second essay, we study the impact of firm-level AI capabilities on exploratory innovation to determine how AI’s value-creation process can facilitate knowledge innovation. Drawing on March and Simon (1958), we theorize how AI capabilities can help firms overcome bounded rationality and pursue exploratory innovation. We compiled a unique dataset consisting of 54,649 AI conference publications, 3 million patent filings, and 1.9 million inter-firm transactions to test the hypotheses. The findings show that a firm’s AI capabilities have a positive impact on exploratory innovation, and interestingly that conventional exploratory innovation-seeking approaches (e.g., traditional data management capabilities and inter-firm technology collaborations) negatively moderate the positive impact of AI capabilities on exploratory innovation.

The impact of AI technologies can be beyond knowledge innovation. Embodied AI technologies, specifically robotics, are driving operational innovation in manufacturing and service industries. While industrial robots designed for pre-defined tasks in controlled environments are extensively studied, little is known about the impact of AI-based service robots designed for customer-facing dynamic environments. In the third essay, we seek to examine how service robots can affect operational efficiency and service quality using the case of the hospitality industry. The preliminary results from a difference-in-differences model using a dataset of 4,610 restaurants in Singapore demonstrate that service robot adoption increases customer satisfaction, specifically through perceived service quality. To validate the initial result and further explore underlying mechanisms, we plan to collect additional datasets from different geographic areas and industries.

 

Disrupt with AI: The Impact of Deep Learning Capabilities on Exploratory Innovation

Lee, Myunghwan, Victor Cui, Gene Moo Lee. “Disrupt with AI: The Impact of Deep Learning Capabilities on Exploratory Innovation”, AOM 2023

Given the importance of exploratory innovation in fostering firms’ sustainable competitive advantages, firms often depend on technological assets or inter-firm relationships to pursue exploration. Regarded as a general-purpose technology, deep learning (DL)-based artificial intelligence (AI) can be an exploratory innovation-seeking instrument for firms in searching unexplored resources and thereby broadening their boundary. Drawing on the theories of organizational learning and path dependence, we hypothesize the impact of a firm’s DL capabilities on exploratory innovation and how DL capabilities interact with conventional pathbreaking activities such as technical assets and inter-firm relationships. Our empirical investigations, based on a novel DL capabilities measure constructed from comprehensive datasets on AI conferences and patents, show that DL capabilities have positive impacts on exploratory innovation. The results also show that extant technological assets (i.e., structured data management capabilities) and inter-firm relationships remedy the constraints on a firm’s innovation-seeking behaviors and that these path-breaking activities negatively moderate the positive impact of DL capabilities on exploratory innovation. To our knowledge, this is the first large-scale empirical study to investigate how DL affects exploratory innovation, contributing to the emerging literature on AI and innovation.

AI Voice in Online Video Platforms: A Multimodal Perspective on Content Creation and Consumption

Zhang, Xiaoke, Mi Zhou, Gene Moo Lee AI Voice in Online Video Platforms: A Multimodal Perspective on Content Creation and Consumption,Working Paper.

  • Previous title: How Does AI-Generated Voice Affect Online Video Creation? Evidence from TikTok
  • Presentations: INFORMS DS (2022), UBC (2022), WITS (2022), Yonsei (2023), POSTECH (2023), ISMS MKSC (2023), CSWIM (2023), KrAIS Summer (2023), Dalhousie (2023), CIST (2023), Temple (2024), Santa Clara U (2024), Wisconsin Milwaukee (2024)
  • Best Student Paper Nomination at CIST 2023; Best Paper Runner-Up Award at KrAIS Summer Workshop 2023
  • Media coverage: [UBC News] [Global News]
  • API sponsored by Ensemble Data
  • SSRN version: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4676705

Major user-generated content (UGC) platforms like TikTok have introduced AI-generated voice to assist creators in complex multimodal video creation. AI voice in videos represents a novel form of partial AI assistance, where AI augments one specific modality (audio), whereas creators maintain control over other modalities (text and visuals). This study theorizes and empirically investigates the impacts of AI voice adoption on the creation, content characteristics, and consumption of videos on a video UGC platform. Using a unique dataset of 554,252 TikTok videos, we conduct multimodal analyses to detect AI voice adoption and quantify theoretically important video characteristics in different modalities. Using a stacked difference-in-differences model with propensity score matching, we find that AI voice adoption increases creators’ video production by 21.8%. While reducing audio novelty, it enhances textual and visual novelty by freeing creators’ cognitive resources. Moreover, the heterogeneity analysis reveals that AI voice boosts engagement for less-experienced creators but reduces it for experienced creators and those with established identities. We conduct additional analyses and online randomized experiments to demonstrate two key mechanisms underlying these effects: partial AI process augmentation and partial AI content substitution. This study contributes to the UGC and human-AI collaboration literature and provides practical insights for video creators and UGC platforms.

Ideas are Easy but Execution is Everything: Measuring the Impact of Stated AI Strategies and Capability on Firm Innovation Performance

Lee, Myunghwan, Gene Moo Lee (2022) “Ideas are Easy but Execution is Everything: Measuring the Impact of Stated AI Strategies and Capability on Firm Innovation Performance”Work-in-Progress.

Contrary to the promise that AI will transform various industries, there are conflicting views on the impact of AI on firm performance. We argue that existing AI capability measures have two major limitations, limiting our understanding of the impact of AI in business. First, existing measures on AI capability do not distinguish between stated strategies and actual AI implementations. To distinguish stated AI strategy and actual AI capability, we collect various AI-related data sources, including AI conferences (e.g., NeurIPS, ICML, ICLR), patent filings (USPTO), inter-firm transactions related to AI adoption (FactSet), and AI strategies stated in 10-K annual reports. Second, while prior studies identified successful AI implementation factors (e.g., data integrity and intelligence augmentation) in a general context, little is known about the relationship between AI capabilities and in-depth innovation performance. We draw on the neo-institutional theory to articulate the firm-level AI strategies and construct a fine-grained AI capability measure that captures the unique characteristics of AI-strategy. Using our newly proposed AI capability measure and a novel dataset, we will study the impact of AI on firm innovation, contributing to the nascent literature on managing AI.

IS papers on Cybersecurity

I do not actively conduct research on cybersecurity. So I will stop updating this page (March 3, 2025).

Last update: Jan 18, 2022

In this post, I gathered recent IS publications (2010-current) on the topic of cybersecurity. It is by no means an exhaustive list of the topic. This does not cover other related topics such as privacy and ethics.

  1. Jacob Haislip, Jee-Hae Lim, Robert Pinsker (2021) The Impact of Executives’ IT Expertise on Reported Data Security Breaches. Information Systems Research 32(2):318-334.
  2. Ahmed Abbasi, David Dobolyi, Anthony Vance, Fatemeh Mariam Zahedi (2021) The Phishing Funnel Model: A Design Artifact to Predict User Susceptibility to Phishing Websites. Information Systems Research 32(2):410-436.
  3. Yunhui Zhuang, Yunsik Choi, Shu He, Alvin Chung Man Leung, Gene Moo Lee & Andrew Whinston (2020) Understanding Security Vulnerability Awareness, Firm Incentives, and ICT Development in Pan-Asia, Journal of Management Information Systems, 37:3, 668-693.
  4. Qian Tang & Andrew B. Whinston (2020) Do Reputational Sanctions Deter Negligence in Information Security Management? A Field Quasi‐Experiment, Production and Operations Management 29(2):410-427.
  5. Yoo, Chul & Goo, Jahyun & Rao, Raghav. (2020). Is Cybersecurity a Team Sport? A Multilevel Examination of Workgroup Information Security Effectiveness. MIS Quarterly. 44. 907-931.
  6. Mohammadreza Ebrahimi, Jay F. Nunamaker Jr. & Hsinchun Chen (2020) Semi-Supervised Cyber Threat Identification in Dark Net Markets: A Transductive and Deep Learning Approach, Journal of Management Information Systems, 37:3, 694-722
  7. Sebastian W. Schuetz, Paul Benjamin Lowry, Daniel A. Pienta & Jason Bennett Thatcher (2020) The Effectiveness of Abstract Versus Concrete Fear Appeals in Information Security, Journal of Management Information Systems, 37:3, 723-757.
  8. Che-Wei Liu, Peng Huang & Henry C. Lucas Jr. (2020) Centralized IT Decision Making and Cybersecurity Breaches: Evidence from U.S. Higher Education Institutions, Journal of Management Information Systems, 37:3, 758-787.
  9. Ravi Sen, Ajay Verma & Gregory R. Heim (2020) Impact of Cyberattacks by Malicious Hackers on the Competition in Software Markets, Journal of Management Information Systems, 37:1, 191-216
  10. John D’Arcy, Idris Adjerid, Corey M. Angst, Ante Glavas (2020) Too Good to Be True: Firm Social Performance and the Risk of Data Breach. Information Systems Research 31(4):1200-1223.
  11. Zan Zhang, Guofang Nan, Yong Tan (2020) Cloud Services vs. On-Premises Software: Competition Under Security Risk and Product Customization. Information Systems Research 31(3):848-864.
  12. Terrence August, Duy Dao, Kihoon Kim (2019) Market Segmentation and Software Security: Pricing Patching Rights. Management Science 65(10):4575-4597.
  13. Seung Hyun Kim, Juhee Kwon (2019) How Do EHRs and a Meaningful Use Initiative Affect Breaches of Patient Information?. Information Systems Research 30(4):1184-1202.
  14. Kai-Lung Hui, Ping Fan Ke, Yuxi Yao, Wei T. Yue (2019) Bilateral Liability-Based Contracts in Information Security Outsourcing. Information Systems Research 30(2):411-429.
  15. Victor Benjamin, Joseph S. Valacich, and Hsinchun Chen (2019) DICE-E: a framework for conducting darknet identification, collection, evaluation with ethics. MIS Quarterly 43(1):1–22.
  16. Indranil Bose and Alvin Chung Man Leung (2019) Adoption of identity theft countermeasures and its short- and long-term impact on firm value. MIS Quarterly 43(1):313–328.
  17. Corey M. Angst, Emily S. Block, John D’Arcy, and Ken Kelley (2017) When do IT security investments matter? Accounting for the influence of institutional factors in the context of healthcare data breaches. MIS Quarterly 41(3):893–916.
  18. Orcun Temizkan, Sungjune Park, Cem Saydam (2017) Software Diversity for Improved Network Security: Optimal Distribution of Software-Based Shared Vulnerabilities. Information Systems Research 28(4):828-849.
  19. Shu He, Gene Moo Lee, Sukjin Han, Andrew B. Whinston (2016) How Would Information Disclosure Influence Organizations’ Outbound Spam Volume? Evidence from a Field Experiment. Journal of Cybersecurity 2(1), pp. 99-118.
  20. Yonghua Ji, Subodha Kumar, Vijay Mookerjee (2016) When Being Hot Is Not Cool: Monitoring Hot Lists for Information Security. Information Systems Research 27(4):897-918.
  21. Karthik Kannan, Mohammad S. Rahman, Mohit Tawarmalani (2016) Economic and Policy Implications of Restricted Patch Distribution. Management Science 62(11):3161-3182.
  22. Chul Ho Lee, Xianjun Geng, Srinivasan Raghunathan (2016) Mandatory Standards and Organizational Information Security. Information Systems Research 27(1):70-86.
  23. Jingguo Wang, Manish Gupta, and H. Raghav Rao (2015) Insider threats in a financial institution: Analysis of attack-proneness of information systems applications. MIS Quarterly 39(1):91–112.
  24. Jingguo Wang, Nan Xiao, H. Raghav Rao (2015) Research Note—An Exploration of Risk Characteristics of Information Security Threats and Related Public Information Search Behavior. Information Systems Research 26(3):619-633.
  25. Sabyasachi Mitra, Sam Ransbotham (2015) Information Disclosure and the Diffusion of Information Security Attacks. Information Systems Research 26(3):565-584.
  26. Debabrata Dey, Atanu Lahiri, and Guoying Zhang (2014) Quality competition and market segmentation in the security software market. MIS Quarterly 38(2):589–606.
  27. Seung Hyun Kim and Byung Cho Kim (2014) Differential effects of prior experience on the malware resolution process. MIS Quarterly 38(3):655–678.
  28. Ryan T. Wright, Matthew L. Jensen, Jason Bennett Thatcher, Michael Dinger, Kent Marett (2014) Research Note—Influence Techniques in Phishing Attacks: An Examination of Vulnerability and Resistance. Information Systems Research 25(2):385-400.
  29. Asunur Cezar, Huseyin Cavusoglu, Srinivasan Raghunathan (2013) Outsourcing Information Security: Contracting Issues and Security Implications. Management Science 60(3):638-657.
  30. Xia Zhao, Ling Xue & Andrew B. Whinston (2013) Managing Interdependent Information Security Risks: Cyberinsurance, Managed Security Services, and Risk Pooling Arrangements, Journal of Management Information Systems, 30:1, 123-152.
  31. Chul Ho Lee, Xianjun Geng, Srinivasan Raghunathan, (2012) Contracting Information Security in the Presence of Double Moral Hazard. Information Systems Research 24(2):295-311.
  32. Ransbotham, S., Mitra, S., & Ramsey, J. (2012). Are Markets for Vulnerabilities Effective? MIS Quarterly36(1), 43–64.
  33. Gupta, A., & Zhdanov, D. (2012). Growth and Sustainability of Managed Security Services Networks: An Economic Perspective. MIS Quarterly36(4), 1109–1130.
  34. Kai-Lung Hui, Wendy Hui & Wei T. Yue (2012) Information Security Outsourcing with System Interdependency and Mandatory Security Requirement, Journal of Management Information Systems, 29:3, 117-156.
  35. Caliendo, M., Clement, M., Papies, D., & Scheel-Kopeinig, S. (2012). Research Note: The Cost Impact of Spam Filters: Measuring the Effect of Information System Technologies in Organizations. Information Systems Research23(3), 1068–1080.
  36. August, T., & Tunca, T. I. (2011). Who Should Be Responsible for Software Security? A Comparative Analysis of Liability Policies in Network Environments. Management Science57(5), 934–959.
  37. Chen, P., Kataria, G., & Krishnan, R. (2011). Correlated Failures, Diversification, and Information Security Risk Management. MIS Quarterly35(2), 397–422.
  38. Mookerjee, V., Mookerjee, R., Bensoussan, A., & Yue, W. T. (2011). When Hackers Talk: Managing Information Security Under Variable Attack Rates and Knowledge Dissemination. Information Systems Research22(3), 606–623.
  39. Galbreth, M. R., & Shor, M. (2010). The Impact of Malicious Agents on the Enterprise Software Industry. MIS Quarterly34(3), 595–612.
  40. Mahmood, M. A., Siponen, M., Straub, D., Rao, H. R., & Raghu, T. S. (2010). Moving Toward Black Hat Research in Information Systems Security: An Editorial Introduction to the Special Issue. MIS Quarterly34(3), 431–433.

Papers on AI, Automation, and Robotics

Last update: May 17, 2024

In this post, I am gathering AI, automation, and robotics-related papers in information systems and related disciplines. This is by no means an exhaustive list. I will keep updating this list.

  1. Babina, Tania, Anastassia Fedyk, Alex He, James Hodson (2024) Artificial intelligence, firm growth, and product innovation, Journal of Financial Economics 151.
  2. Eloundou T, Manning S, Mishkin P, Rock D. (2023) GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130.
  3. Acemoglu, Daron and Pascual Restrepo (2022) Tasks, Automation, and the Rise in U.S. Wage Inequality, Econometrica, 90(5): 1973-2016,
  4. Park, Jiyong, Jongho Kim (2022) A Data-Driven Exploration of the Race between Human Labor and Machines in the 21st Century, Communications of ACM 65(5):79-87.
  5. Koch, Michael, Manuylov Ilya, Marcel Smolka (2021) Robots and Firms, The Economic Journal 131(638):2553-2584.
  6. Ge, Ruyi, Zhiqiang (Eric) Zheng, Xuan Tian, Li Liao (2021) Human–Robot Interaction: When Investors Adjust the Usage of Robo-Advisors in Peer-to-Peer Lending. Information Systems Research 32(3):774-785.
  7. Jain, Hemant, Balaji Padmanabhan, Paul A. Pavlou, T. S. Raghu (2021) Editorial for the Special Section on Humans, Algorithms, and Augmented Intelligence: The Future of Work, Organizations, and Society. Information Systems Research 32(3):675-687.
  8. Berente, Nicholas, Gu, Bin, Recker, Jan, Santhanam, Radhika. (2021) Special Issue Editor’s Comments: Managing Artificial Intelligence. MIS Quarterly (45: 3) pp. 1433-1450.
  9. Dixon, Jay, Bryan Hong, Lynn Wu (2021) The Robot Revolution: Managerial and Employment Consequences for Firms. Management Science 67(9):5586-5605.
  10. Schanke, Scott, Gordon Burtch, Gautam Ray (2021) Estimating the Impact of “Humanizing” Customer Service Chatbots. Information Systems Research 32(3):736-751.
  11. Park, H., Jiang, S., Lee, O. D., Chang, Y. (2021) Exploring the Attractiveness of Service Robots in the Hospitality Industry: Analysis of Online Reviews. Information Systems Frontier
  12. Graetz, G., Michaels, G. 2018. Robots at work. Review of Economics and Statistics (100:5), pp. 753-768.
  13. Luo, Xueming, Siliang Tong, Zheng Fang, Zhe Qu (2019) Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science 38(6):937-947.

 

Reflections on conference organizations in 2021

In 2021, I had great opportunities to serve as an organizer for three events: Program Co-Chair for INFORMS Workshop on Data Science 2021, Workshop Co-Chair for KrAIS Research Workshop 2021, and Minitrack Co-Chair for HICSS 2022 TAEM Minitrack. This post is to reflect my experiences in organizing these events. In sum, I am grateful that I had the opportunity to contribute to my academic communities!

1. INFORMS Workshop on Data Science 2021 (Virtual via Zoom) [DS 2021 Program]

This INFORMS workshop is for data science-oriented IS research. Many of the papers are technical in nature, using various computational and machine learning approaches, to solve a variety of business and societal challenges. The previous workshops were collocated with CIST in the INFORMS Annual Meeting locations. Due to the pandemic, the 2021 workshop was held virtually. There are both positive and negative sides to being virtual. Just focussing on the positive side, because there is no travel cost, many participants from all around the world could participate in the event, although there could be some time zone issues. Thankfully, we could invite many prestigious editors to our panel discussion (many thanks to the editors Andrew Burton-Jones, Alok Gupta, Subodha Kumar, Olivia Sheng, D. J. Wu as well as the moderator Ahmed Abbasi). We also had the great honor to have Jon Kleinberg as the keynote speaker. Last but not least, we had great presentations about many cutting-edge papers on recommender systems, algorithm design, deep learning, personalization, pricing, network analytics, and healthcare. Thanks to all the conference co-chairs (Gautam Pant, Wenjun Zhou, Shawn Mankad), program co-chairs (Yong Ge, Jingjing Zhang), and other organizing committee members. It was great teamwork!

2. KrAIS Research Workshop 2021 (Hybrid in Austin, TX & Zoom) [KrAIS 2021 Program]

This post-ICIS workshop is to promote the scholarship and provide networking opportunities for the AIS members with Korean heritage. ICIS 2021 was held in Austin, TX, and I was looking forward to visiting my second home through this opportunity. We managed to secure a great conference venue (OASIS on Lake Travis). However, due to the COVID-19 variant omicron, many international participants (including myself!) had to cancel their travel plans at the very last moment, hence the organizers had to manage many last-minute changes. Managing a hybrid conference brought interesting challenges: the audio-video delivery between the venue and Zoom, the transition between on-site and online, and registration processes. We had a great panel discussion on the issue of EDI (many thanks to panelists Victoria Yoon, Byungjoon Yoo, Min-Seok Pang, and the moderator Dokyun Lee). Also, I appreciate the support from the KrAIS Co-Presidents (Habin Lee, Byungjoon Yoo) and KrAIS Committee members (Wooje Cho, Kyung Young Lee, Youngsok Bang). Many thanks to my fellow workshop co-chairs (Hyeyoung Hah, JaeHong Park)!

3. HICSS 2022 Technology and Analytics in Emerging Markets (TAEM) Mini-track (Virtual via Zoom) [HICSS 2022 TAEM Mini-track]

Starting from HICSS 2021, Sang-Pil Han, Sungho Park, Wonseok Oh, and I are organizing a mini-track at the HICSS conference. The objective of this mini-track is to nurture a vibrant community between academics and industry on the topic of technology and analytics in emerging markets. Of course, in beautiful Hawaii islands. Unfortunately, we had to do virtual conferences for two consecutive years (we are missing Hawaii!). Fortunately, we had many great paper submissions this year (thanks to the authors who submitted their great work). We had a Zoom session to discuss the accepted papers. We all agreed to meet in person again in Hawaii next year!

4. Summary

When I was a participant in conferences, I didn’t realize all the complexities behind the scene. Now I started to appreciate the significant amount of time and effort put by conference organizers to make such events a reality. Thanks to all the organizers of the numerous conferences and workshops that I attended in my academic life! In 2022, I will be serving as a track co-chair (with Ali Shuyaev and Jing Wang) for ICIS 2022 Data Analytics for Business and Societal Challenges, a track co-chair (with Seung Hyun Kim and Dan J. Kim) for PACIS 2022 Cybersecurity, Privacy, and Ethical Issues, and a conference co-chair (with Jingjing Zhang and Yong Ge) for INFORMS Workshop on Data Science 2022. The reward of good work is more work, but I am happy to keep contributing to our academic communities 🙂

Do Incentivized Reviews Poison the Well? Evidence from a Natural Experiment at Amazon.com

Park, Jaecheol, Arslan Aziz, Gene Moo Lee. “Do Incentivized Reviews Poison the Well? Evidence from a Natural Experiment at Amazon.comWorking Paper.

  • Presentations: UBC (2021), KrAIS (2021), WISE (2021), PACIS (2022), SCECR (2022), BU Platform (2022), CIST (2022), BIGS (2022)
  • Preliminary version in PACIS 2022 Proceedings
  • RAs: Minsuk Seo, Vibudh Singh

The rapid growth in e-commerce has led to a concomitant increase in consumers’ reliance on digital word-of-mouth to inform their choices. As such, there is an increasing incentive for sellers to solicit reviews for their products. The literature has examined the direct and indirect effects of incentivized reviews on subsequent organic reviews within consumers who received incentives. However, since incentivized reviews and reviewers are often only a small proportion of a review platform (only 1.2% in our sample), it is important to understand whether their presence and absence on the platform affect the organic reviews from other reviewers who have not received incentives, which are often in the majority. We theorize two underlying effects that incentivized reviews can generate on other organic reviews: the herding effect from imitating incentivized reviews and the disclosure effect from the increased trust or skepticism by explicit incentive disclosure statements. Those two effects make organic reviews either follow or deviate from incentivized reviews. Using Bidirectional Encoder Representations from Transformers (BERT) to identify incentivized reviews and a natural experiment caused by a policy change on Amazon.com in October 2016, we conduct difference-in-differences with propensity score matching analyses to identify the effects of banning incentivized reviews on organic reviews. Our results suggest the disclosure effects are salient: banning incentivized reviews has positive effects on organic reviews in terms of frequency, sentiment, length, image, and helpfulness. Moreover, we find that the presence of incentivized reviews has poisoned the well for organic reviews regardless of the incentivized review ratio and that the effect is heterogeneous to product quality uncertainty. Our findings contribute to the literature on online review and platform design and provide insights to platform managers.

Seeing the Unseen: The Effects of Implicit Representation in an Online Dating Platform

Kwon, Soonjae, Gene Moo Lee, Dongwon Lee, Sung-Hyuk Park (2024) “Seeing the Unseen: The Effects of Implicit Representation in an Online Dating Platform,” Working Paper.

  • Previous title: Learning Faces to Predict Matching Probability in an Online Dating Market
  • Presentations: DS (2021), AIMLBA (2021), WITS (2021), ICIS (2022)
  • Preliminary version in ICIS 2022 Proceedings
  • Based on an industry collaboration

This study investigates the effects of implicit preference-based representation on user engagement and matching outcomes in two-sided platforms, focusing on an online dating context. We develop a novel approach using explainable AI and generative AI to create personalized representations that reflect users’ implicit preferences. Through extensive matching simulations, we demonstrate that implicit representation significantly enhances both user engagement and matching outcomes across various recommendation algorithms. Our findings reveal heterogeneous effects driven by positive cross-side and same-side network effects, which vary depending on the gender distribution within the platform. This research contributes to understanding implicit representation in two-sided platforms and offers insights into the transformative potential of generative AI in digital ecosystems.