Author Archives: catherine sverko

Thanks Everyone

Thanks to everyone for an engaging course. I appreciated the suggestions and questions in response to my posts that definitely helped me extend my thinking. I have so much more to learn in the area of using technology in math and science and I look forward to exploring it all in the near future. I wonder when it will actually hit me that I have completed the MET program? Although I will no longer be working with deadlines and grades I think I have about a years worth of references that I have amalgamated over the past two years to check out.

I have to admit I am a bit sad that my MET journey is over. There were other courses I wanted to take and people that I loved working with. Little did I know two years ago that an online masters would be so interactive and help not only build professional networks but really great friendships too. (Funny how friendships can develop with people you have never met in person).

Congratulations to all who have accomplished their goal and are finished MET.

Good luck to those who are still completing the program.

I would love to keep in touch with all of you, to try new programs, bounce ideas off each other etc.

If anyone needs help getting the gray matter working for projects I am happy to help.

My email is

Thanks Samia for an excellent engaging course as well as your helpful responses to emails.


The Journey of a Thousand Miles Begins with a Single Step

How to turn Roadblocks into Catalysts for Change?

In all of MET, one of the most important quotes I have learned is by Mishra and Koehler (2006) “merely knowing how to use technology is not the same as knowing how to teach with it” (p.1033).  During the course of ETEC 533 I have been very focused on the following components: The importance of students constructing their own knowledge in the classroom and beyond through technology; Collaboration and improved assessment methods; The need for improved teacher professional development and release time to learn and implement technology in the classroom; and the need for easily accessible technological devices and sufficient bandwidth in schools.

When I embarked on my MET journey I had very little understanding of what technology was available for me to use in my classroom.  I chose MET because I knew I needed to change what was happening with my students and my teaching.  As a grade 5-8 educator for the past 26 years I felt like I was losing my students.  Each day I entered my class with the plan to invigorate and “wow” my students, and each day I felt disappointed.

When I first began teaching I remember being proud of myself if my classroom was a silent hub, where students worked quietly on their own finishing the work I had assigned.  Of course, this was after I had spent half the lesson nattering at them, dazzling them with my brilliance. Patting myself on the back for creating a room full of disengaged bored students is shameful in retrospect.  At the time, I followed what I knew–good teachers had quiet students, good teachers’ students asked few questions because the lesson had been so amazing no questions were necessary, and good teachers did what has always been done.

As my career progressed I realized that silence meant nothing was happening:  No noise, but no learning as well.  My students had learned to play the game–stay quiet and no one knows that you have no idea what is happening in class.  Change came about because my students were flunking test after test.  Originally, I chalked that up to them not studying, not that I hadn’t really taught them anything.  My students fell into three basic categories.  Group 1 were the students who could regurgitate facts, group 2 were those who learned in spite of me, and group 3 were those who had learned nothing and were not motivated to study to do well on a rote paper and pencil test.  While I had assumed the check marks and x’s on their assignments and tests were feedback, they were really nothing more than judgments on the student’s ability or willingness to play the assessment game.

It was at this point I really started talking to my students.  I started speaking to them during lessons, during seatwork, during group work.  I started assessing them during these conversations, really beginning to understand who knew what and how well.  The more I spoke to my students the more engaged they became–maybe because I was actually paying attention to them, not trying to keep them quiet.  Seatwork evolved into collaboration time.  Students started talking more and more with each other.  They began to see each other as sources of information and support.  The more they relied on each other the more they brought out the best in each other.  They wanted to succeed so they drew on each others’ strengths.

As stated by Kozma (2003), “Designers should provide students with environments that restructure the discourse of …classrooms around collaborative knowledge building and the social construction of meaning” (p.9).  I was finally starting to design the classroom I had envisioned.

I won’t pretend it was all sunshine and roses, but things started improving.  Now I knew when learning was occurring as partner and group talk got heated and excited as they discovered new facts or wanted to prove their theory.  It was noisy and it was going well.  I found that math and science became learning labs.  Kids were not used to talking about math and science, they were just expected to do it.

During the readings, I found this quote by Hattie and Timperly (2007) especially enlightening and a good reminder of what feedback needs to be:  “feedback needs to provide information specifically relating to the task or process of learning that fills a gap between what is understood and what is aimed to be understood” (p.82).

As for assessments, my students learned that hiding their struggles from me did no good.  At random times, anyone could be expected to come sit with me and show me what they knew.  The showing could be talking, drawing, explaining, using manipulatives or props.  Students knew I was not there to judge them, rather I really wanted to help them learn.  I evolved from a math and science teacher that said “today we will learn this…do it this way, because I said so”, to a teacher who said, “ok you don’t get this, let’s find another way, can anyone else think of a way we could do this?”  It was actually really hard work to get my students to accept there is more than one way to solve a math or science problem.  For some this is frustrating–they want the quick answer “show me how to do it so I can get it done”, while I want them to explore and understand.

I was happy that a change had occurred in my teaching and classroom but I still knew something was missing.  My basic teaching strategy had not changed.  I still chalked and talked a lot.  I babbled incessantly about concepts and ideas.  I had no idea how to change this.  Thank goodness for MET courses like ETEC 533.  Math and Science are perhaps the hardest subjects to change your teaching methods for.  We are so used to following rules and formulas that we forget about understanding what is happening.  I have been searching for ways to create a constructivist classroom.  My initial steps included introducing a makerspace and allowing students to direct some of their own learning.

This worked well for some units but, in general, students and I as the teacher do not have enough experience to make self-directed learning successful as a full-time learning tool.  What I learned was there is a difference between self-directed and constructivist learning.  In constructivist learning all students explore the same math or science concept but construct their knowledge as they see fit.  Module B was an excellent in-depth introduction for me regarding different constructivist techniques.

Anchored Instructions, SKI and Wise, Lfu and T-Gem all have appealing characteristics about them–whether it be the video modules of Jasper Woodley, the scaffolding used in the WISE module, the Global Information systems used to support Learning for Understanding or the T-GEM format using Chemland as an example.  When I first started exploring these TELE’s I thought I would end up choosing one as my favourite and leaving the rest behind.  What I learned was they all have valuable facets and they can all be used in different modules.  I myself was stuck in the thinking of “What’s best? Let’s throw out the rest”.  Perhaps it was just engrained in me that we cannot simultaneously use different constructivist teaching methods in the same year.  I am used to the Board administration bringing in a new program and throwing out the rest.  I was always frustrated by this approach but found myself doing the same thing.  My thinking is changing over to “keep what is good, change what doesn’t work”.

Linn et al. (2003) hit the nail on the head for me in their article Wise design for knowledge integration stating, “we align professional development, knowledge integration, and flexibly adaptive curricula to build on the commitments and talents of teachers as well as the constraints and opportunities of their classroom contexts rather than imposing new practices without concern for past successes” (p. 518).  I can see myself using each of these TELE’s in the coming years.

Moving beyond the methodology I was enlightened by the variety of simulations, software and interactive sites we investigated in ETEC 533.  Finklestein et al (2005) reported that “results indicate that properly designed simulations used in the right contexts can be more effective educational tools than real laboratory equipment, both in developing student facility with real equipment and at fostering student conceptual understanding” (p. 2).  They further state that “in an inquiry-based laboratory, students using the simulations learned more content than did students using real equipment” (p. 6).

As I teach elementary students, some of the information was too advanced for my students but many of the websites we looked at were perfect.  I can easily see my students enjoying the scaffolded learning afforded by the WISE program.  The simulations provided by the pHet site from the University of Colorado will become a staple in my classroom.  I enjoyed looking at the examples provided in the course and wondering how I could expand on them with other technologies.  The example of the pHet simulation on geometry and the use of the leap motion technology were the perfect combination of simulation and embodied learning.

As a kinesiologist, I have always known that learning with just our brains is not enough. We need to incorporate movement, rehearsal and building new kinesthetic and neural pathways.  The more methods we can use to integrate learning the more easily our students will be able to recall and use the information they have learned in new situations.  Rote memorization has a tremendous failure rate for recall, whereas embodied learning and simulations with gestures are much more effective. I noticed this in my classroom when students tried the leap motion app with 3D geometry.  “When my students tried the leap motion 3-d geometry app in groups (taking turns to be the hands) I watched as almost all of them, even when observing and guiding others, used their hands or whole bodies (at times my class looked like an introduction to interpretive dance) to try and move in three-dimensional space to understand how to manipulate the blocks” (Sverko, 2017).

Retrieved from

After synthesizing all of the learning in this course and previous MET courses I feel I am ready to take the next step and begin constructivist lessons in my class using technology.  Unfortunately, this is where I encounter the scourge of technology implementation in the classroom.  I do not have devices in my classroom that I can use when they are most valuable, rather I must look ahead in my lessons and try to guess when they will be most helpful.  When I have identified the time, I have to try and sign out devices to my classroom.  Of course, there are never enough devices for each student, not to mention that often the previous class forgot to plug in the individual Chromebook or the entire cart and I have twenty dead batteries.

If I am lucky enough to sign out the Chromebook, at a time that is beneficial, I then must cross my fingers that I will be able to access the simulations I want to demonstrate.  Often the bandwidth in our schools prevents us from using all Chromebooks at the same time.  (Another frustration with devices in our school board is that we are not allowed to install apps without approval.  Even more frustrating is that often our requests for specific apps are denied by the administration.)

Given all of the hurdles teachers must jump to use technology in their classes is it any wonder that the majority avoid using it?  Avoidance of using what is provided further leads to an apathy at learning anything new.  Most feel they do not want to waste time learning and implementing something that will flop during their lesson.  Even if devices and broadband worked well we still would have the difficulty of teacher training on technology and the time to learn how to use the programs effectively.  As highlighted in our interviews, many teachers see this as a barrier to proper implementation.

Retrieved from

Teachers who do want to pilot technology in their classroom often become overwhelmed with the time, energy and money it takes to do a good job.  Not to mention that many of these lead teachers quickly burn out because they are being asked to help more and more staff members.  Although I recognize and have provided a case for how the barriers to the use of technology in the classroom seem to be insurmountable, I am still optimistic there is way to proceed.  What is needed is a mandate in each province making technology and the implementation of the ISTE standards a priority in every classroom.  We need to look to boards that are leading the way in technology.  An example is the Edmonton Catholic District School Board.  They have an emergent technology department that leads the way in showing teachers from K-12 how to implement technology successfully.  Boards and administration need to be accountable for making the changes and bringing our schools into the 21st Century.

I look forward to being a catalyst for change in education, bringing technology to the forefront and leading by example. As colleagues see what can be done with constructivist techniques and simulations and software, hopefully they will become inspired to try at least one activity.  I will continue to provide examples of Boards that are getting technology right to my administration in the hopes that they will move ahead in the right direction.

The Journey of a Thousand Miles Begins with a single step.

Retrieved from

Upon reflection, I still feel my definition provided earlier in the course holds true:

The ideal pedagogical design of a technology-enhanced learning experience for math and science must first and foremost see students as constructors of their knowledge.  Allowing students to use technology to effectively assist in the construction of their knowledge could include, but not be limited to: simulations (often with equipment unavailable in science and math classrooms), collaboration (with peers, mentors and outside experts), design (planning their learning and pathways), coding, exploration of various concepts (perhaps outside of the realm of the current curriculum mandate), testing hypotheses (trying their ideas; seeing what works and what doesn’t).  Technology is a tool for students to use in the construction of their knowledge, aided by a supportive, knowledgeable teacher who can help push the boundaries of the students understanding.  Students learn with, not are taught by technology (Sverko, 2017).

I now, thankfully, feel that I am better prepared to make this a reality in my classroom.

Retrieved from


Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning

about the real world is better done virtually: A study of substituting computer

simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Hattie, H. & Timperly, H. (2007). The power of feedback. Review of Educational Research, 77(1),


Kozma, R., & Robert B Kozma. (10/01/2003). Journal of research on technology in education: 

            Technology and classroom practices: An international study International Society forTechnology in Education.

Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education,

            87(4), 517-538.

Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework

for teacher knowledge. The Teachers College Record, 108(6), 1017-1054



​Acknowledging Barriers does not remove them

There have been many challenges, however, to implementing geospatial technologies in K-12 classrooms. These include technical issues pertaining to the interface design of software, time for classroom teachers to learn to use the software, lack of existing basal curriculum materials that integrate geospatial technologies, and lack of time to develop learning experiences that integrate easily into existing school curricula (Meyer et al., 1999; Baker & Bednarz, 2003; Bednarz, 2003; Kerski, 2003; Patterson et al., 2003). While we acknowledge these barriers, new Web-based geospatial tools such as Google Earth and instructional resources integrated with appropriately designed instructional materials show much potential to be used with diverse learners to promote spatial thinking (Bodzin & Cirucci, in press) (p. 2-3).

In education, I believe there is no dispute that technology has a ton of potential to transform our classrooms. All learners can benefit from using simulations, VR, MR and other software to improve student understanding, improve collaboration and eliminate misconceptions students have but how do we ignore the barriers that everyone seems to recognize. Too little teacher training, technical issues, lack of prepared curriculum materials, and lack of time for teachers to both learn and implement these learning experiences. These mitigating factors will continue to affect technology use in the classroom until they are properly addressed.

MET students, colleagues in schools and professional researchers all recognize these issues but no one has found a way to deal with them. MET students are among the educators that want to use technology but struggle to find a way that doesn’t involve countless personal hours and expense. Teachers in all classrooms may agree with the awesome potential technology has but are still required to prepare their students for outdated standardized assessment. There is not time to do both. Finally, how do even proceed with implementing technology in our classrooms in a meaningful way if we do not have the devices, software or bandwidth to move forward.
As a member of my school boards technology development team, I have found these issues continually ignored and pushed to the side. Everyone knows change is needed but our cries fall on the deaf ears of administrators. Frustrating.


Bodzin, A. M., Anastasio, D., & Kulo, V. (2014). Designing Google Earth activities for learning Earth and environmental science. In Teaching science and investigating environmental issues with geospatial technology (pp. 213-232). Springer Netherlands.

All images courtesy of the creative commons.

The Power of Feedback


“feedback needs to provide information specifically relating to the task or process of learning that fills a gap between what is understood and what is aimed to be understood (Hattie and Timperly, 2007., p 82.).”

One of the most under rated forms of communication between teacher and student is that of feedback. Many educators believe that feedback is the mark on an assignment or test, the check marks and ex’s that show a student what they got correct or incorrect. But this is not really feedback at all. Feedback, as explained by Hattie and Timperly (2007), is information that specifically relates to the gap in learning between what a student understands (including misconceptions) and what is aimed to be understood.

If I look no further into my students learning than the grade on an assessment I have a very limited view of their understanding. I may be looking at lucky guesses or a lack of understanding in terms of what the question asked. Talking to my students, having them demonstrate their knowledge in multiple ways ( that are comfortable for them) is the only true way I can identify their misconceptions, clearly see where the gaps are in their learning and satisfy myself that I have a clear understanding of what they have learned.


Hattie, H. & Timperly, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112

All images courtesy of the creative commons.

Keep What Works, Change What Doesn’t

Each week as I did my readings for ETEC 533 I found myself highlighting specific sections of text that really spoke to me as an educator. Reviewing them all this week a few really stood out and reminded me of why I found them powerful in the first place.

We align professional development, knowledge integration, and flexibly adaptive curricula to build on the commitments and talents of teachers as well as the constraints and opportunities of their classroom contexts rather than imposing new practices without concern for past successes (Linn, et al., 2003. p. 518)

The above quote from the article “Wise design for knowledge integration” by Linn, Clarke and Slotta (2003) was like a breath of fresh air. Having been an educator in Ontario for the past 26 years my colleagues (in school and in the MET program) often speak of the never-ending reinvention of the wheel in education. That for some reason change in education often means throwing away all that you have been doing, the good and the bad, and replacing it with something else. Unfortunately, it usually comes about that the changes were not all that great.

Linn et al., (2003) seem to understand this phenomenon and allow for past successes to continue to be used. All administrators in charge of professional development should have this quote as part of their mission statement. It is much more effective than “out with the old and in with the new”. Perhaps it could be shortened to “keep what works, fix/change what doesn’t.”


Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.

ISTE Standards should be common knowledge



The standards speak specifically to teachers about their students becoming good digital citizens, as well as preparing and ASSESSING using technology. Assessment continues to be one of the areas that educators lack development in. We must move away from traditional rote paper and pencil assessments and provide students the opportunity to demonstrate their knowledge and skills in new ways. For more information on assessing in the current educational climate please watch the video below by Eric Mazur a Harvard professor and leader in 21st Century assessment.

In terms of the ISTE standards for Students the language itself is inspiring:
Empowered Learner
Digital Citizen
Knowledge Constructor
Innovative Designer
Computational Thinker
Creative Communicator
Global Collaborator

If you look at each of those terms for the most part you see verbs in all of them. Verbs are action words, things students need to be doing! Collaborating, Communicating, Constructing, Designing…
All words that bring us back to one of the most important changes we need to see in Education and that is moving the student from a passive role of sitting, listening and memorizing to constructors of their own knowledge. Allowing them to identify and correct misconceptions, building understanding through collaboration and leading their own learning.

(2013, November 19). Retrieved April 02, 2017, from Assessment the Silent Killer of Learning.

Bucci, T. T., Cherup, S., Cunningham, A., & Petrosino, A. J. (2003). ISTE standards in teacher education: A collection of practical examples. The Teacher Educator, 39(2), 95-114. doi:10.1080/08878730309555333

Synthesis of Module B and Module C

Synthesis of Module B and Module C

When I began reviewing Module B and C I literally saw lines connecting in my head between Pedagogical Content Knowledge and Technological Pedagogical Content Knowledge. Module B focussed on ways we can help students construct their own knowledge. The various methods such as SKI/WISE, Jasper Woodley, Anchored Instruction, LfU and T-GEM help us see a way out of traditional teaching methods. Academia is so steeped in tradition that change seems impossible. We know that sitting students in rows, throwing facts at them by speaking, reading or a video, having them complete paper pencil tasks (preferably in silence) is ineffective and lacks engagement. Rather our classrooms need to be hubs of activity. Learning done in collaboration with others, by looking at problems, gathering information, testing hypotheses and identifying misconceptions. This is the change we must strive for.

The methods discussed in Module B provide a framework on which new types of lessons can be built. They all have their strengths and each is likely better suited to specific subjects and curriculum than others but using any of them is a step in the right direction. Right now the word constructivism is echoing in my head loud and clear. Construct, construct, Construct.

My infographic from Module B still represents how all facets of the TELE’s are linked in my mind.

I used gears to represent content and methodology as they are parts of a whole machine that must work cohesively if the machine is to function at all.

The funnel leads into the active learning and from there sharing and collaborating. In the end, this machine creates collaborative, critical thinking problem solvers.

Synthesis Infographic

Module C provided us with a variety of technological tools to take teaching to the next level. For me, it was where the Technology in Technology Pedogagocial Content Knowledge came to life.

There were so many programs and devices that can elevate and enhance our lessons vs just changing them. I realized the importance of kinesthetic awareness in understanding concepts and manipulating data. The value of virtual reality devices and learning experiences and finally the many programs available to us to enhance our STEM classes. The last activity where we combined what we had learned specifically from Module B and C showed me that combining TPCK using TELE’s and specific programs allows us to create units of study for students that will be rewarding and help them become collaborative, critical thinkers and problem solvers that are able to adapt to an ever-changing job market.




Why educators are frustrated by incorporating technology into their classrooms

Reflections on Module A: Lesson 3

Interviews / Why educators are frustrated by incorporating technology into their classrooms

One of the overarching themes that emerged from the interviews in Lesson #3 was how frustrated educators are by the lack of training and equipment that are available to them in order to properly implement technology in the classroom.

Most teachers either teach themselves technology because they are interested in it and see it as beneficial to the students in their classrooms or see a teacher using technology and ask for assistance learning it.  As was mentioned in the Strawberry Hill School video’s the new teacher had been helped by her teaching partner to implement technology but the new teacher felt she was imposing on the veteran teachers time. It was not the veteran teacher’s job to teach her (the new teacher) technology.

The teacher’s who do implement technology on their own often become overwhelmed by the requests of others to introduce them to new devices and software. This mentorship position while rewarding is often taxing on the mentor as they receive no time or remuneration for the extra job they are performing.

Another easily recognized problem mentioned in a number of the interviews was the lack of devices, the cumbersome problem of signing out and returning tech devices as well as the constant frustration of poor bandwidth issues. Teachers agreed that having technology in their rooms would be very beneficial so that devices can be used for those “teachable moments”. Having to sign out equipment and return it at a specific time does not allow for lessons to flow organically. Many teachers have given up on trying to use technology because of device issues (devices not charged, not working) or the inability to get all students on the network at the same time. Most teachers felt too much time was wasted in trouble shooting technology glitches.


The following are excerpts from the interview posts highlight the views of teachers across Canada:

  1. Mr. A also acknowledged frequently the difficulty of getting teachers the training they need to successfully integrate technology into their math and science classrooms. He noted that “You can ask for an expert to come out and help you with these things but it’s really hard because of all schools across the school division and only a couple of experts to come and help you. You’ve got to book the pretty far in advance.”. He identified that most of the effective technology learning happening in his context was a result of informal learning from colleagues. This seemed to be both a convenience for teachers and a necessity born of limited training staff as supported by his comment “If a teacher knows how to do something, we would go to that teacher because lots of times with the district it’s hard for them to come out and teach you…”.

Posted in A. Interview on January 19, 2017 by daniel bosse.

2.  Most uses of technology were used mainly for her teaching. Students had no interaction with the technologies. Second, the differential experience with technology her and her teacher education classmates had regarding Smart Boards. She did not feel that her teacher program prepared her for integrating technology but she also felt that her classmates “definitely felt differential in terms of technology coming out of the program.” Another aspect I found interesting was her limitations regarding integrating technology. From the start, she noted how her teaching partner does not use technology, which seems to have some influence on her as she says that “her teacher partner does not want to use technology with kindergarten students” and therefore she is “not currently using technology” in the classroom. Other limitations she mentions include the unreliability of technology based on its durability and wifi connectivity issues. Furthermore, she goes into detail about the inconvenience of the sharing aspect of technology. She says, “some schools have computer labs, which are shared between all classroom classes and resource classes. There are sometimes iPad cards that hold about 20 iPads, but again, shared between all classes. On top of that, teachers have to physically go somewhere else in the school to sign those out, sometimes finding out that the time they wanted use the iPads is already booked.” Though my interviewee currently does not use technology in teaching the math and sciences, she has shared her perspective about the limitations behind its use. 

Posted in A. Interview on January 20, 2017 by Gloria Ma

3.  One of the overarching themes that came through in the discussion was the lack of training to integrate technology into the classroom, whether it was for new teachers in teacher’s college or established teachers attempting to use it in the classroom. Both teachers felt that there was a big push for teachers to use different types of technology in the classroom, but that there was no real training to back up the initiative. Any knowledge or skills acquired were usually done on the initiative of the teacher themselves or it was a one-off PD session with no follow-up or time to practice. TM noted that “any pursuit of professional development must be on your own time, you must seek it out on your own” and TC echoed that with “it is not available in the school and we are not given enough time to practice and apply our new knowledge.”  I added that any real knowledge or understanding of the technology that I use in my classroom has come from my own initiative, finding courses online, or seeking out courses offered through the Board of Ed or my union. All of us agreed that if there were better training and time given to practice and apply the knowledge, there would be a greater integration of technology into all the subjects at a higher order level than just using them for typing or research.  It was also felt that this would give more established teachers a higher comfort level using technology as it does not come naturally to us, it is not our culture so there is a higher learning curve for many of us.

The major hurdle or challenge for these teachers was accessibility, of the devices and of training or assistance. Devices in the school have to be signed out through the library and are often not available when it is an optimum time for them to be used. TM explained that there are no teachable moments when we can just turn and use the technology in a seamless way as they would have needed to be signed out a week in advance, and I don’t have ESP to be able to know exactly when something like that will occur in the class.” It is difficult to know where you will be in your pacing of subjects to be able to determine when it will be the best time to sign them out. It is impossible to use them in the way they should be integrated as they are used in real life applications. TC added that when the devices freeze or crash there is a lot of lost time trying to fix it, or reboot it, and we lose the class’ attention while they wait. Often it is something we can’t fix and it takes days or weeks before someone from the board will take care of it.” , essentially making the technology inaccessible to the classroom while we are waiting for it to be functional.

Posted in A. InterviewUncategorized on January 21, 2017 by wincherella

4. Highlight #1:The Disconnect Between Teaching Training and Actual Practice 

As Teacher K is a recent university graduate, I was interested to see her perspective on the connection or disconnection between the education she received and her own classroom practice.  While in her experience the importance of and theory behind technology use was emphasized, even basic examples of programs and apps were not readily offered by instructors.  As a result, unguided exploration was the primary option for finding ways to integrate technology into teaching practice.  Conversely, her current school division and colleagues offer many resources for tools and implementation options, including time with mentors.  As I am Teacher K’s mentor, it has been rewarding to see her growth over time in the area of technology.  Despite the theoretical–practical disconnect between her university training and practice, Teacher K has been able to find ways to meaningfully use technology tools in her classroom.  “In science, technology allows students to see videos of situations we are unable to see in real life. For example, when studying ecosystems, we are unable to visit a desert. By using technology, students are able to see pictures and videos of the interactions that happen in different biomes all over the world.”   

Posted in A. Interview on January 23, 2017 by STEPHANIE IVES.

5. As a distance learning teacher, Teacher L faces some issues of isolation. Throughout the interview there is little indication of collaboration efforts with colleagues or professional development in the area of technology. When asked how she has learned to incorporate referenced types of technology into her learning space, she admits that it is largely “through trial and error” and that “you just need to jump in”. When prodded to share if colleagues have been a useful resource in helping learn new technologies, she seemed unsure and responded with “I guess” and then mentioned that she has “emailed the Zoom people to see how to make things work” when initially setting up a Zoom conference room for her students. Although Teacher L does not seem to have much collaboration with other teachers, she is self motivated to learn new technologies, but feels that her teaching assignment is too broad and is too demanding of her time and energy. She states, “I think there are definitely programs, and like I said these labs and stuff out there, that could enhance it [student learning experience], but this is my own shortcoming that I need to find, or spend time researching and getting those programs, or finding those websites that would do more. When I think of technology enhancing learning, I think of those things that you can send the student to help them in a more practical way. Ultimately that is what I would love to add more of to the courses.” From an earlier portion of the interview she shares some hopes and frustrations: “One thing that I haven’t used, but I would like to use but it’s challenging, and to be honest because I have so many courses I haven’t been able to look into it as much, but there are online labs that are for chemistry and physics, but I haven’t implemented them as much as I would like. I feel like I haven’t implemented a lot.” 

Posted in A. Interview on January 24, 2017 by jessica holder.

While these issues seem to be universal what was most interesting to me was that teachers want to use technology. They want to learn to work on new devices and software and help their students become more tech literate. The way this must come about, however, time for in servicing and learning the program, as well as the capital investment of purchasing devices and software so that everyone has an opportunity to have technology in their rooms available whenever needed seem insurmountable. There has to be a creative solution. Hopefully, it happens soon.


Reflections on Module A: Lesson 2

Grounding Issues and Finding Patterns in Experience (Case 1) 

In all parts of lesson 2, I found Case 1 to be not only the most informative but the most inspiring. Starting in my third MET course I became very interested in makerspaces and classrooms as learning labs. Case 1 of Lesson 2 perfectly embodies what I would like my classroom to look like. The learning lab classroom in the video is inspiring and how I think all children should learn. Inquiry, investigation and construction of knowledge by scaffolding activities, so that the learned information becomes valuable to the students and therefore more easily recalled at a later time. Students are able to see how their problem solving, critical thinking and collaboration skills helped them tackle the problems they were faced with.

Although I have been teaching for 26 years it has only been in the last five, that I have realized that what I have been doing in my classrooms is not creating self-directed, motivated learners who can solve new and novel problems. Classrooms need to evolve from rows of desks and seated children doing paper and pencil work to active learning labs where students are up, moving, discussing and engaged in their learning.

With this change in the way our classrooms look and function, it is equally important that as educators we change how we are assessing our students. We can not assess with the same old written tests that ask students to regurgitate memorized facts, rather we need to be actively assessing and interacting with our students, asking questions, challenging answers and encouraging students to dig deeper.

Case 1 of Lesson 2 demonstrated what a classroom with technology can look like. Several of the other video cases showed classrooms where technology was implemented but the dynamic of the room did not change as much as it did in case 1. For the most part the other video cases represented classes where the same material was taught, but technology was used rather than older methods. In my opinion this is not the best use of technology.

Technology should not be used to do what has always been done with a different tool. Technology should be used to take the learning further. Students interacting and solving problems that allow them to move forward in their learning. This is why I have fallen in love with makerspaces. A makerspace is an interactive learning environment that allows students to construct their own knowledge. Lessons and activities are scaffolded so that students are challenged yet do not become frustrated.

The following is a website I co-created on makerspaces.

Reflections on Module A: Lesson 1

As the course draws to a close I have spent a lot of time reflecting on what we learned in each module, the views of the students in the course and how it all has come together for me.

Reflections on Module A: Lesson 1

The posts from Module A Lesson 1 that resonated the most with me were related to not only identifying and hopefully correcting student misconceptions but also misconceptions the educator may have. During the course of the MET program, I have wondered, stated and been frustrated by why change in education is so difficult? Week 1 in ETEC 533 was no different.

In Ontario, Elementary teachers are expected to teach all subjects (excluding French). Over the years I have noticed that many of my colleagues are university trained in the Arts, Languages or Social Sciences. Many do not have a background in the sciences, math or technology, yet they are expected to teach these concepts to their students. Truthfully, at least half of my colleagues are scared to death of teaching math and science because they know they do not have a strong background in it themselves.

The following two quotes from Anne and Gloria’s posts highlight this:

In a research paper conducted by Harvard-Smithsonian Center for Astrophysics, the relationship between teacher knowledge and student learning was studied, and concluding that student learning is directly related to teacher knowledge. “If teachers hold such misconceptions themselves or simply are unaware that their students have such ideas, their attempts at teaching important concepts may be compromised” (Sadler et al, 2013). These leads me to two questions: How can teachers identify their own misconceptions and how can they better understand and identify misconceptions of their students?

Confrey notes that “children develop ideas about their world, develop meanings for words used in science, and develop strategies to obtain explanations of how and why things behave as they do, and that these naive ideas cannot be easily ignored or replaced” (Confrey, 1990). It is important for teachers to be able to tease out these misconceptions by probing a student’s conceptual framework using direct questioning allowing them to develop effective lessons and activities to provide opportunities for students to discover new information and correct their misconceptions. Previous research on student’s misconceptions shows that student’s have difficulty assimilating and acquiring scientific knowledge if their misconceptions are ignored or not adequately addressed. One way for teachers to address this gap is to consider that an emphasis on identifying and remediating holes in the teacher’s knowledge may be more helpful for the science teacher’s effectiveness in the classroom (Sadler et al).

Posted in A. Conceptual ChallengesUncategorized on January 10, 2017 by wincherella. 4 Comments

When I was watching the video of Heather, I had this realization that I also have misconceptions in the science and math disciplines as a learner. I recall myself generating logical reasonings to explain scientific phenomenon. Furthermore, as an elementary teacher, I am responsible for delivering accurate knowledge to my students. This lingering thought provoked me to look at teacher misconceptions and how they compare with student misconceptions in science, specifically. I came across an article by Burgoon, Heddle and Duran (2011) that was quite recent and focused on comparing the misconceptions about physical science between elementary teachers and students. Elementary science teachers were assessed on their physical science knowledge. The results showed the elementary science teachers shared similar misconceptions in topics of temperature, gasses, magnetism and gravity. Of course, these results cannot be generalized to the entire population of science teachers, but it does indicate some concern as teachers who have misconceptions, can contribute to further misconceptions for their students. For instance, a possible source of student misconception comes from an unreliable source (like a teacher)! 

Posted in A. Conceptual Challenges on January 7, 2017 by Gloria Ma. 7 Comments

In addition to not persuing science or math beyond the required courses in highschool many teachers realize that their learning may have been incomplete because concepts were taught only once with limited hands on experience. The following excerpt from Michelle’s post really highlighted this for me.

After watching the video the concepts within it rang true to me. In my experiences in science, many concepts were taught only once and models, simulations and hands-on experience were limited to what resources were available, which were often slim to none. If models were available, the educators usually stood at the front of the class with the model in front of them as they “taught” us the concept. We did not handle or construct the models. One thing I found interesting was how strongly the students held on to their personal scientific theories. It seems that early experiences learning scientific concepts are fraught with misconceptions that may not be challenged and thus taken as the ultimate truth. I wonder if this is because as children we were not taught to question what we saw in books or what we were taught. We implicitly trusted these sources, including our understanding of 3-dimensional phenomenon which was more often than not, represented in 2-D form (in drawings, graphs, etc.).

Posted in A. Conceptual Challenges on January 9, 2017 by Michelle Furlotte. 2 Comments

All of this makes me wonder if elementary teachers should teach their subject specific specialization rather than all subjects. Are we truly offering a well-rounded education if a student leaves grade 8 with never having been taught by a science teacher, a Physical Educations Teacher or a History Teacher? I am starting to see this as a disservice to our students and their education. Questions I will continue to ponder: are elementary students too young to benefit from having several specialist teachers? Is there a social-emotional reason that elementary students need the same teacher all day?