The Jasper materials are responding to the perpetual issue of making learning relevant to our students. The Jasper program aims to show students real-life problems that require skills, problem solving, and critical thinking related to the classroom material they are encountering.
Since I became a teacher, I have surprisingly struggled with the teaching of math. This has been surprising to me because I did really well in math all throughout my schooling. In “teacher school” we were shown many new ways of teaching math that branched away from the traditional rote memorization, focusing on there being more than one way to arrive at an answer and sometimes more than one correct answer to a problem; however, bringing this teaching to my grade 3 students in a classroom setting has been a whole other dilemma. In my first year I started following the program, Math Makes Sense. This brought hands-on learning activities, worksheet practice on facts and skills, and some in depth opportunities, however, I was not making it through the units, they took forever! I felt like the only way I could get through them would be to do math all day, but what about teaching reading and writing, and then science and everything else? I have tried other programs, such as Primary Success, which provides a well-rounded curriculum of fact building. I incorporate Mad Minutes because I do see the value in continuing rote memorization of basic facts. I have tried math stations and have seen some positive correlations arise from that system. I do feel I have not encountered something that works as well as I want it too, though.
I found myself with some extra time this week due to 2 snow days (we NEVER have snow days in the Kootenays, by the way, because we are used to getting a lot of snow, but this snowfall has been exceptional!). I was quite energized after the readings and decided to use my extra time to create a set of word problems that I could use with my students. Could I get through my curriculum using problem solving incorporating multiple math topics instead of traditional unit lessons and worksheet practice? The Cognition and Technology Group of Vanderbilt (1992a) states that “students need to develop [component skills] in the context of meaningful problem posing and problem-solving activities rather than as isolated ‘targets’ of instruction (p. 66). I focused on creating these problems to anchor my instruction by making them complex, requiring significant formulation, and having multiple viable solutions that “highlight the relevance of mathematics or science to the world outside the classroom” (Pellegrino & Brophy, 2008, p. 281). I have attempted to achieve this through incorporating the names of my students throughout the problems, investigating daily issues that arise for my students, and further personalizing the problem by using pictures of my students encountering the problem. At first, I thought I would try this out with my students as whole class guided lessons. As I read these articles further, however, I grew to understand the necessity of designing this time to “scaffold learners’ knowledge construction by fostering a community of learning and inquiry,” (Pellegrino & Brophy, 2008, p. 281) as well as allowing for “extended collaborative problem solving across multiple days and multiple activities” (Hickey, Moore, & Pellegrino, 2001, p. 614).
I am very interested in the idea of Legacy projects, too. I find this partners well with my use of a class blog, as I am able to pull up pictures and video of students from previous years to showcase a similar project we may be working on. There seems to be a pull towards making a video for students, too, that is motivating and seems to draw many of them into the project as well, perhaps as the authors state, because it “helps them see themselves as part of a community whole goal is to teach others as well as to learn” (Pellegrino & Brophy, 2008, p. 293).
The readings this week and the investigation into Jasper leaves me with wheels turning towards what my possible TELE project could be at the end of this course. I look forward to continuing to explore this area.
Cognition and Technology Group at Vanderbilt. (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology Research and Development, 40(1), 65-80.
Hickey, D. T., Moore, A. L., & Pellegrino, J. W. (2001). The motivational and academic consequences of elementary mathematics environments: Do constructivist innovations and reforms make a difference? American Educational Research Journal, 38(3), 611-652.
Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303. http://link.springer.com/chapter/10.1007%2F978-0-387-76898-4_14