Category Archives: B. Knowledge Diffusion

The Whole is Greater than the Sum of Its Parts – GLOBE and Virtual Field Trips

  • How can learning be distributed and accelerated with access to digital resources and specialized tools and what are several implications of learning of math and science just in time and on demand?

Digital resources and specialized tools expand the diversity of opportunities available to students and teachers.  Limitations such as financial resources, geographic location, and student circumstances can be at least somewhat addressed through digital options. The building of learning communities helps promote distributed learning. Magdalene Lampert (1990) explains that a participation structure has been defined by Florio, Erickson, and Shultz as “the allocation of interactional rights and obligations among participants in a social event; it represents the consensual expectations of the participants about what they are supposed to be doing together, their relative rights and duties in accomplishing tasks, and the range of behaviours appropriate in the event” (p. 34).  Her article is focused on the social and student-led creation and experience of learning mathematics.  Community and discourse is central to her approach. This process and hypothesis-testing approach to learning mathematics can also serve to accelerate learning by enabling students to truly understand the learning process and the content, thereby increasing the likelihood of effective application.

GLOBE is an impressive application of learning that is distributed through a community.  Scientists and experts offer training to teachers and support and opportunity to students, and students are able to provide raw data for scientific projects. According to Butler and Macgregor (2003), “Students and teachers benefit from the scientists not only as sources of knowledge and modelers of scientific reasoning but also an inspiration and role models for students who may choose to pursue careers in science and technology” (p. 18). Students participating in GLOBE projects have a real and authentic purpose for their work, which should increase engagement and thereby encourage efficient use of class time and deeper student learning both inside and outside of the classroom. They have a real opportunity to be a valuable part of the scientific process.  Additionally, there is an opportunity for classes from various locations to team up on a project, thereby enabling each group to learn from the others and to share their own learning.  A true community forms as students, educators, and researchers are each able to be teachers and learners.

As a rural teacher, virtual field trips and webcams stand out to be as an excellent opportunity to engage in visual and experiential learning despite challenges of location, time, or money.  Being able to watch animal behaviour on camera, explore an otherwise inaccessible location, and interact with experts enables students to develop understandings that would not otherwise be readily available.  I agree with the students in J. Spicer and J. Stratford’s study, however, who felt that the occurrence of real field trips and virtual field trips should not be mutually exclusive.  “[I]nstead of allowing VFTs to be thought of as alternatives to ‘real’ field trips perhaps it would be best to explore how a VFT might either enhance preparations for a real field trip and act as a revision tool after a field trip, both approaches potentially giving ‘value-added’ to the real field trip” (Spicer & Stratford, 2001, p.352).  From a business perspective, virtual field trips can be more cost effective; however, the experience is not the same.  Both virtual field trips and real field trips offer students valuable learning experiences, but these experiences could be best implemented in complement to one another, as opposed to in place of one another, wherever possible.

As a whole, student learning will be accelerated by experiences that enable them to make insightful connections, understanding the reasoning behind learning, and feel like they are part of something greater than themselves.  Distributed cognition in which different participants in learning have different strengths and understandings to offer helps to reinforce the value of community in learning.  An effective teacher will recognize and create opportunities for experts to be involved in lessons.  Each member of the learning community can improve the learning experience, and the larger the community is, the greater the power of the distributed knowledge.  The whole is stronger than the sum of its parts.  Learning math and science on demand and just in time simulates the scientific and mathematical research processes in which research is conducted in response to a need.  As students are able to learn in timely contexts, they can be better able to make connections between what they are learning and the applications and importance of it.  This can be a challenge, however, when a need arises and the community of support is not available or accessible.  In these situations, students must be confident that they can rely on their own understanding of the learning process and their previous knowledge to help them explore solutions.

Resources

Butler, D.M., & MacGregor, I.D. (2003). GLOBE: Science and education. Journal of Geoscience Education, 51(1), 9-20.

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American educational research journal, 27(1), 29-63.

Spicer, J., & Stratford, J. (2001). Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17, 345-354.

Knowledge Construction in STEM

Student engagement is an ongoing concern for most educators as disengaged students are passive, not actively engaged in constructing new knowledge. Students become engaged when the activity, not only captures their imagination, but also has relevance for them. Inquiry is one way of igniting the spark of interest in students which is essential to science learning.  Educationally effective programs are those in which products are not emphasized, inquiry is sparked, open-ended questions are generated, and students actively participate and appear involved (Gutwill and Allen). The ultimate engagement is to put the learner in charge of learning, and inquiry learning does just that.

However, the learning needs to be anchored to something that is relevant to the learner in order for new knowledge to be constructed and retained for future retrieval. GLOBE researchers have suggested that GLOBE is an example of anchored instruction, and although this appears to be the case in that it is conducted in a realistic setting to respond to a realistic inquiry, the students themselves are only collecting and submitting the data, not analyzing it, looking for trends, or making conclusions about the significance of the data they are collecting.  Penuel and Means (2004) note that “students are not just collecting data as part of an isolated laboratory experience but as contributors to actual scientific studies” (p. 296). I agree that the students are an integral part of the data collection but I disagree that the students are doing “real science investigations” (295) as they are not involved in using the data to discover its significance and do not take part in the actual scientific studies. Scientists use the student collected data in their own investigations (Penuel and Means, 296).

A key assumption is that students can collect scientifically useful data, however it must be collected in accordance with specific protocols and be reported consistently over time. (Penuel and Means, 296). This can be somewhat onerous for the students and some of the participants find submitting the data repetitive. Because the students are not involved with using the data, the relevance of the collection becomes remote, and the students lose interest because it becomes a chore, rather than an exciting inquiry into science.  Students in these schools are not getting the realistic picture of the nature of scientific investigation that the authentic data collection is intended to provide (Penuel and Means, 309).

The GLOBE program provides learning activities that can be implemented by the teacher at the same time as the students are doing the data collection. The GLOBE philosophy is one of providing resources but leaving the decisions concerning curriculum and pedagogy up to the teachers because the teacher’s choices are not threats to the program’s scientific and educational goals (Penuel and Means. 297). This means that the learning material is disconnected from the actual scientific inquiry. Students and teachers could use the learning materials and the subsequent data collection to pose their own questions, collect their own data, analyze it, and formulate explanations, but this would be outside of the inquiry being done by the GLOBE scientists. If this were the case, then the program would be anchored instruction, but as it stands now, it is just a small part of a larger scientific inquiry being completed outside of the program.

References

Butler, D.M., & MacGregor, I.D. (2003). GLOBE: Science and education. Journal of Geoscience Education, 51(1), 9-20.

Kountoupes, Dina L., Oberhauser, Karen S., Citizen science and youth audiences: Educational outcomes of the monarch larva monitoring project. Journal of Community Engagement and Scholarship, Vol 1, 1

Penuel, W.R., & Means, B. (2004). Implementation variation and fidelity in an inquiry science program: Analysis of GLOBE data reporting patterns. Journal of Research in Science Teaching, 41(3), 294-315.

Authentic Learning with Nature

Through the readings from this past week, I have explored a seemingly disjointed array of ideas. Following is a brief overview:

Carraher, Carraher and Schliemann (1985) present the effect of contextualized learning on mental math computation processes with street vendor children in Brazil; Falk and Storksdieck (2010) share results from their study on adult leisure science learning at the California Science Center in Los Angeles; Butler and MacGregor (2003) provide an in-depth explanatory overview of the GLOBE program designed to enable “authentic science learning, student-scientist partnership, and inquiry-based pedagogy into practice on an unprecedented scale” (p.17)! Although these three readings are diverse in study and purpose, one significant theme pronounced itself throughout: the theme of contextualized learning. Regardless of the age of learner, socio-economical position, or location on this great planet, contextualized learning offers authenticity of learning and effective growth in both content areas and competencies.

When considering authentic learning, I like to refer to Herrington and Kervin’s (2007) definition:

      The nine characteristics of authentic learning include:

  1.     Authentic context that reflects the way knowledge will be used in real life.
  2.     Authentic activities that reflect types of activities that are done in the real world over a sustained period of time.
  3.     Expert performance to observe tasks and access modelling.
  4.     Multiple Roles and Perspectives to provide an array of opinions and points of view.
  5.     Reflection to require students to reflect upon knowledge to help lead to solving problems, making predictions, hypothesizing and experimenting.
  6.     Collaboration to allow opportunities for students to work in pairs or in small groups.
  7.     Articulation to ensure that tasks are completed within a social context.
  8.     Coaching and Scaffolding by the teacher in the form of observing, modelling and providing resources, hints, reminders and feedback.
  9.     Integrated Authentic Assessment throughout learning experiences on a task that the student performs i.e. project rather than on separate task i.e. test.

     (Herrington & Kervin, 2007)

Although all of these characteristics of learning are not prominently practiced in the networked communities explored during this past week, many, if not all, can be emphasized through teacher design by incorporating a combination of non-technology based and network community activities.

The follow learning outline is designed using the network community called Journey North along with other on-going non-technology nature study activities. As an individual and an educator who advocates for regular nature study as a part of one’s life, the Journey North community peeked my interest as a very viable resource to integrate with already implemented nature study practices with students from grades K-4. I have chosen two projects at Journey North that could be easily implemented with my younger distance learning students. Following is a chart with resources and activities aligned with the authentic characteristics of learning as described by Herrington et al. (2007).





Butler, D.M., & MacGregor, I.D. (2003). GLOBE: Science and education. Journal of Geoscience Education, 51(1), 9-20.
Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British journal of developmental psychology, 3(1), 21-29.
Falk, J. & Storksdieck, M. (2010). Science learning in a leisure setting. Journal of Research in Science Teaching, 47(2), 194-212.
Herrington, J. & Kervin, L. (2007). Authentic Learning Supported by Technology: Ten suggestions and cases of integration in classrooms.  Educational Media International, 44 (3), 219-236. doi: 10.1080/09523980701491666

Authentic Knowledge

“…learners of science have everyday representations of the phenomena that science explains. These representations are constructed, communicated, and validated within everyday culture. They evolve as individuals live within a culture” (Driver, et al., 1994, p. 11).

I am from a small community of approximately 6,000 people in northwestern British Columbia. While we have a small museum/art gallery (half of the ground floor of the building is the museum, the other half is the art gallery), we do not have many resources as far as math and science field trips go. We do have a fish hatchery, as well as mineral exploration sites, past mines, forests, and so on relatively nearby, but we are limited as far as more diverse hands-on experiences outside the classroom go. While I agree that students construct knowledge through immersion in their surrounding environments and cultures, I also know that if I simply left it at that, many of my students would not be provided with the opportunities needed to extend their thinking and to continue to develop a sense of inquiry as they got older. Because of this, I am finding virtual learning environments for science and math increasingly important the more I learn about previously inaccessible opportunities and options now available.

As Driver et al. (1994) point out, “the symbolic world of science is now populated with entities such as atoms, electrons, ions, fields and fluxes, genes and chromosomes; it is organized by ideas such as evolution and encompasses procedures of measurement and experiment. These ontological entities, organizing concepts, and associated epistemology and practices of science are unlikely to be discovered by individuals through their own observations of the natural world. Scientific knowledge as public knowledge is constructed and communicated through the culture and social institutions of science” (p. 6). Classrooms by nature have the potential to support this “culture and social institutions of science.” Students actively engage with peers, both socially and collaboratively, sharing perspectives and knowledge, generating ideas, and developing questions and hypotheses; “knowledge is not transmitted directly from one knower to another, but is actively built up by the learner…” (Driver, et al., 1994, p. 5). However, at the same time, Yoon et al., (2012) point out that, “as noted in the NRC (2009) report and elsewhere (Squire and Patterson 2009; Honey and Hilton 2011), learning in informal spaces is fluid, sporadic, social, and participant driven — characteristics that contrast with the highly structured formal classroom experience” (p. 521). While the “structured formal classroom experience” is changing, virtual environments, or environments that integrate digital technology to create an inquiry-based classroom, continue to create a much different classroom experience for learners. Sherry Hsi (2008) argues that it is through this “…direct experience and manipulation with virtual objects” that informal learners are given the opportunity to build “their intuitions about basic scientific phenomena” (p. 892). In this way, Hsi points out, information technologies have “transformed…informal learning institutions” through the creation of “…freely available educational resources accessible over computer networks and the Web to create extended learning opportunities outside of formal schooling” (p. 891), as well as providing opportunities for educators to use pre- or post-visit activities with their classes, and to access virtual explorations for remote learners via the internet.

The next question is how to effectively integrate digital technologies and virtual environments into existing curriculums. Yoon et al., (2012) conducted a study at “a premiere science museum in a large urban city in northeast USA using augmented reality visualization technologies” (p. 520). Their study focused on electrical conductivity and circuits, and research was conducted on four groups using digital technology and increasing levels of scaffolding to support learning. The traditional “hands-on” group was presented with two metal spheres; one connected to a battery by a wire and the other connected to a light bulb. When a student grabbed the spheres, the circuit was completed and the light bulb lit up. The second group was presented with the same scenario, but this time, the addition of digital technology allowed for a visual representation as well, as the completion of the circuit triggered a projection of the animated flow of electricity onto the student’s hands, arms, and shoulders. Groups three and four also had the digitally enhanced experience, along with varying levels of additional scaffolding to support learning. Yoon et al.’s research concluded “that the digital augmentation, in and of itself, is an effective scaffold” (p. 531); however, the results of their study also found “…increased cognitive abilities in terms of theorizing about the phenomenon from students in Condition 4, suggesting that scaffolds might be necessary to reach more advanced learning” (p. 538). True learning should represent a balance. As Driver et al. (1994) point out, “If students are to adopt scientific ways of knowing, then intervention and negotiation with an authority, usually the teacher, is essential” (p. 11). Driver et al. offer that the teacher must introduce new ideas or cultural tools, provide support/guidance as needed, allow students to make sense of the ideas/tools themselves, and then assess students’ understanding to inform further action. Yoon et al. noted that “When asked what they thought was the most and least helpful scaffold, 100% of the students identified collaborating in a group as most helpful. The least helpful scaffolds were identified as the knowledge prompts (57%) and the directions (37%)” (p. 532).

When exploring various learning environments and communities this week, I was struck by the incredibly amount of information as well as opportunities that are now available. The Exploratorium (https://www.exploratorium.edu/) in San Francisco, California, offers an incredible number of websites (i.e., “Time-lapse Weather Watching,” “Total Solar Eclipse Turkey 2006”), videos (webcasts, video clips, podcasts, and slideshows), blogs, and so on, to support learning in both science and mathematics. By incorporating some of these resources into science lessons, teachers have the opportunity to expose students to information they would likely not be exposed to otherwise, as well as to engage learners, and allow for new and potentially powerful collaborative discussions. A second learning environment that I explored this week (although it was not listed in Lesson 2) was Google Expeditions. I had never used Google Expeditions before, but found it while looking for resources to share on our forum. While I have not yet used this with a whole class (due to trying to figure out how to find that many cell phones, as well as how to make enough cardboard viewers) my initial experiences with it have been pretty neat! There are an incredible number of science-based expeditions that teachers “guide” while students “explore.” The “guide” setting provides teachers with leveled questions as well as important information on locations, species, artifacts, etc. viewed by the students. While this resource does require that each student has a phone and a viewer (which can be made, but does take some time for the first one), it really does provide a virtual experience for the student as the ultimate effect is being right in the scene provided on the screen. Students I have experimented with have been incredibly excited and engaged, asking many questions about what they saw and learned. While I find that many students in my classroom do not really know where to even start asking questions because many of the topics we discuss are outside their realm of experience, Google Expeditions allows for students to have an “experience” to base their questions on.

I was thinking about a comment that I commonly hear today about our learners, that learners today just do not understand concepts as well as learners did in the past. One colleague commented that in the past “we strove for excellence, while today we’re just hoping for some effort.” While there are perhaps elements of truth built into this statement, given the new understandings I have gained from this course, I would question whether students in the past really had a greater understanding of concepts, or if we just assumed they had a greater understanding, without understanding ourselves just how strong a hold misconceptions actually had.

References:

Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.

Hsi, S. (2008). Information technologies for informal learning in museums and out-of-school settings. International Handbook of Information Technology in Primary and Secondary Education, 20(9), 891-899.

Yoon, S. A., Elinich, K., Wang, J., Steinmeier, C., & Tucker, S. (2012). Using augmented reality and knowledge-building scaffolds to improve learning in a science museum. International Journal of Computer-Supported Collaborative Learning, 7(4), 519-541.

Science Learning in Informal Environments

Scientific knowledge is acquired through both personal and social methods (Driver, Asoko, Leach, Scott, & Mortimer, 1994). The social aspect of science is based on construction, validation and communication through the scientific community. As a result, the act of learning science requires individuals to be guided or initiated through these established concepts and practices. Ultimately, the science educator fulfills this role of mediator who makes “personal sense of the ways in which knowledge claims are generated and validated.”

On an individual or personal level, scientific knowledge exists as cognitive schemes change and develop due to new experiences. Intellectual development occurs when an individual interacts with the physical environment and existing schemes are adapted and modified into new ones with these new experiences. While social interactions play a role in learning and development, learning and meaning can only occur on an individual level through the conceptual change of old schemes as a result of experience.

In the classroom environment, students are able to reflect on their own and their peers’ thoughts “in attempting to understand and interpret phenomena for themselves.” The role of the educator is two-fold: to provide novel experiences and promote reflection. These experiences include both physical experiences as well as access to scientific concepts and models that students might not yet be aware.

One avenue for educators to provide additional experience beyond the classroom is out-of-school settings like The Exploratorium in San Francisco, California. This and other informal learning environments provide opportunities for lifelong and everyday learning. Hsi (2008) states that information technology (IT) through these environments is transforming the ways in which informal learners are able to “support their curiosity and interests.” Learners are able to access and accentuate their learning through IT “before, during and after their visits.” Further, remote learners are also able to access “standalone virtual explorations” through the Web. The Exploratorium website (https://www.exploratorium.edu) offers a variety of activities, apps, blogs, videos and other websites to explore. Specifically, a learner interested in solar eclipses could, for instance, use the app on the website to further their own understanding of the concept. This way of learning allows students to experience content material from a different perspective and thus, an alternative to the traditional pedagogy teaching.

Falk and Storksdieck (2010) state that learning for performance and learning for identity-building were inversely related. They argue that learning for performance is typical of school environments however, learning can also be “motivated for purely intrinsic reasons” and have “everything to do with the process of identity-related self-satisfaction. Informal learning environments, such as the Exploratorium, afford opportunities for both learning for performance and learning for identity-building. As educators, while learning for performance is typically a primary focus, learning for identity-building should not be neglected. How do we further encourage identity-building in or out of classrooms?

References

Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.

Falk, J. & Storksdieck, M. (2010). Science learning in a leisure setting. Journal of Research in Science Teaching, 47(2), 194-212. Available in Course Readings.

Hsi, S. (2008). Information technologies for informal learning in museums and out-of-school settings. International handbook of information technology in primary and secondary education, 20(9), 891-899.

 

Situating Mathematics and Science in the Classroom

T. N. Carraher, D. W. Carraher, & A. D. Schliemann (1985) bring forth an interesting insight in “Mathematics in the streets and in schools”. Through their study, these researchers found children involved in the street markets making complex mental math calculations daily and successfully; however, when these same children were brought into a setting with similar pencil and paper mathematical tasks, many of them underperformed. Their results showed that “context-embedded problems were much more easily solved than ones without a context” (p. 24). In their context (the market) when solving successfully, “actual items in question were physically present” (p. 25). Too often in our math classrooms we are asking students to deal with operations and mathematical problems that are “in a very real sense divorced from reality” (p. 28).

As I have mentioned in previous posts, when considering this research and others we have encountered earlier in this course during our exploration of the Jasper series, I set out to revamp some of the problem solving I was using in my grade 3 math class. After exploring many problems that I tried to base in my students’ lives and make more real to them, our next project was to have students create their own problems. I had students use Google slides, accessed by an easy bit.ly address, to compile a class set of problems. Next, we took pictures to add to the slides that showcased the problems using as many props and settings relevant to the problem as possible. This collection was then put on our class blog for students to access from home over spring break to work on. If you would like to see how the project turned out visit: http://mrskostiuksclass.edublogs.org/2017/03/17/solve-me/

Using programs such as GLOBE and virtual field trips are ways to utilize the accessible affordances offered by technology in this day and age. GLOBE not only connects classes with real life scientists and experts in their fields, but it also provides a platform for students to contribute meaningful data to ongoing studies. Showing students future careers in different fields and ways they can contribute in the present day is impactful. Additionally, GLOBE “encourages students to understand the context of their own environment” (p. 12) by immersing them in conducting research around them. As evidenced in the Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985) study, showing students how to solve problems in context is more likely to later be recalled in context when needed.

Similarly, Adedokun, O. A., Hetzel, K., Parker, L. C., Loizzo, J., Burgess, W. D., & Paul Robinson, J. (2012) find that virtual field trips can be “viable alternatives for providing students with learning opportunities and experiences that would have otherwise been unavailable to them” (p. 608) while exposing students to scientists and their real, authentic work.

In summary, I believe that providing students with as many experiences as possible that are situated in context and engaging in problem solving not only for problems they may encounter in the work force but also for problems they currently encounter in their everyday lives as children and students, we can better prepare them with skills necessary to succeed in the math and sciences.

 

Adedokun, O. A., Hetzel, K., Parker, L. C., Loizzo, J., Burgess, W. D., & Paul Robinson, J. (2012). Using Virtual Field Trips to Connect Students with University Scientists: Core Elements and Evaluation of zipTrips™. Journal of Science Education and Technology, 21(5), 1-12.

Butler, D.M., & MacGregor, I.D. (2003). GLOBE: Science and education. Journal of Geoscience Education, 51(1), 9-20.

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British journal of developmental psychology, 3(1), 21-29.

 

GLOBE – Anchored Instruction

Question

Globe researchers have suggested that Globe is an example of anchored instruction. Do you agree or disagree with this statement and why?

Response

After analysis of the GLOBE program, I agree it is an example of anchored instruction.  First, anchored instruction is summarized followed by the reasoning for how GLOBE fits this description.

Cognition and Technology Group at Vanderbilt (CGTV) (1992a) explored The Jasper Series and described it as an example of anchored instruction.  The group defined anchored instruction as an “…approach to instructional design, whereby instruction is situated in realistic, problem-rich setting (p. 78).  Prado and Gravoso (2011) also explain that “…this approach situates learning in realistic or authentic problems, which allows students to experience the kinds of complex, challenging problems that experts encounter…” (p. 62).  To summarize, anchored instruction is authentic, realistic and meaningful instruction that exposes students to challenging problems that experts face in the field of math or science.

GLOBE has two attributes that fit this description.  These attribute are detailed further.

I) Realistic Setting

Penuel and Means (2004) explain “GLOBE is an international environmental science and science education program focused on improving student understanding of science by involving young people in the collection of data for real scientific investigations” (p. 295).  The collection of data that pertains to real scientific investigations qualifies GLOBE to be situated in a realistic setting.  When students contribute to the program with data, they “…are not just collecting data as part of an isolated laboratory experience but as contributors to actual scientific studies” (Penuel and Means, 2004).

II) Experiencing Problems as Experts

Penuel and Means (2004) further explain that GLOBE is an example of a “…so-called network science [program]…[that draws]…on networked technologies such as the Internet to create virtual communities that engage students not just as learners but as scientists themselves, collecting and analyzing data that are part of larger scientific investigations” (p. 297).  GLOBE provides students with access to and influence scientific research by contributing data in their local environments.  Moreover, it provides scientists with an enormous amount of data gathered by students to study from.  It is a two way access between research and the classroom.

Hence, GLOBE is truly anchored instruction as it provides realistic research experiences to students in their own classrooms by collecting and submitting data that can be harnessed by scientists and experts in the respective fields of research.

Question for feedback from peers:

Penuel and Means (2004) describe barriers in data reporting as a result of surveying teachers that use the GLOBE program. The biggest barrier described is “…difficulty teachers face in integrating GLOBE with the curriculum (p. 307).  I personally found this to be both a problem and equally surprising.  With a push for more authentic teaching and learning experiences in math and science, I imagined it would be easier to implement the scientific process in the classroom using programs like GLOBE.  A second barrier to reporting data was “difficulty teachers face in finding time to report data” (p. 307).

In your opinion, what would be the necessary steps needed to reduce the barriers of curriculum integration and lack of time to report data in today’s math or science classroom?

References

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Penuel, W.R., & Means, B. (2004). Implementation variation and fidelity in an inquiry science program: Analysis of GLOBE data reporting patterns. Journal of Research in Science Teaching, 41(3), 294-315.

Prado, M. M., & Gravoso, R. S. (2011). Improving high school students’ statistical reasoning skills: A case of applying anchored instruction. Asia-Pacific Education Researcher (De La Salle University Manila), 20(1).

Knowledge Construction, Collaboration and Virtual Reality in Science Class

Speculate on how such networked communities could be embedded in the design of authentic learning experiences in a math or science classroom setting or at home. Elaborate with an illustrative example of an activity, taking care to consider the off-line activities as well

The use of virtual field trips and interactive virtual expeditions (IVE) are valuable tools that an educator can use to make science come alive in the classroom. While there is inherent value in students actually going on a field trip the logistics are often daunting. In my school district students arrive at 8:50 am and dismiss at 3: 30 pm. (asking for the bus to arrive early or return late is a logistical nightmare as 95% of our students are bused home and many come from homes with commuting parents or working farms. If we miss the home busses parents need to pick up their child at the school which often means we end up waiting up to 2 hours for parents who are late for the pick up).

We are located in a rural community in the Niagara region of Ontario. Often field trips become social outings rather than educational experiences. Students spend at least two hours on the bus in each direction, which leaves approximately two hours for exploration and lunch. The cost of bussing has become so high the average field trip costs in excess of 40 dollars per child an amount many of our families cannot afford. So, we must weigh the costs and benefits. Often time the costs outweigh the benefits.

Virtual field trips and IVE are life savers for schools like mine. Students enjoy them, learn from them and often continue to explore them on their own time. Niemitz et al (2008) report that “the use of interactive virtual expeditions in classroom learning environments can theoretically be an effective means of engaging learners in understanding science as an inquiry process, infusing current research and relevant science into the classroom, and positively affecting learner attitudes towards science as a process and a career (p. 562).”

The researchers report that studies have shown that virtual field trips can enhance learning (Cox & Su, 2004; Tuthill & Klemm, 2002; Woerner, 1999), achieve the same gains in student achievement as physical field trips (Garner & Gallo, 2005), and provide an effective supplement to physical field trips (Spicer & Stratford, 2001). As such, we can apply many of the best practices of effective virtual field trips (Klemm & Tuthill, 2003; Woerner, 1999) – purposeful trip planning, learner-centered experiences, active student learning, cooperative learning activities, teachers as guides who scaffold learning experiences, differentiated instruction, and multiple opportunities for learner success – to the field of IVE. (Niemitz et al, 2008 p. 566).”

Collaboration amongst students is possible on the virtual reality field trip as much as on a traditional field trip. Often collaboration in both settings provide students with the opportunity to question and test their hypothesis, discuss findings and eliminate misconceptions. According to Driver et al (1994) “Scientific knowledge is socially constructed, validated and communicated (p. 11).” While Lamon, Laferriere & Breuleux, (in press) reported that research shows that knowledge construction is rarely done in isolation but rather by creating and forming a knowledge building community and the goal for learning communities is that a group of students with focused common issues complete tasks better than any single person.

Working collaboratively in math and science requires three important personal characteristics:

INTELLECTUAL COURAGE: we should be ready to revise any one of our beliefs.

INTELLECTUAL HONESTY: we should change a belief when there is a good reason to

change it…

WISE RESTRAINT: we should not change a belief wantonly, without some good reason, without serious examination (Lampert, 1990 pp. 7-8).

Collaboration among students and access to virtual learning environments need to become integral parts of our daily classrooms. After exploring several of the websites this week GLOBE, Exploratorium and virtual field trips I was reminded of a project Trish Roffey and I created last term in ETEC 565A. This project required us to create a google classroom module for the subject and age group of our choice. We chose Engineering for grade three students ( this module could easily be used with almost any grade level). What I was reminded of was that given today’s technology we can create our own virtual reality digital stories and field trips.

Trish used a Ricoh Theta 5 camera that films in 3D to create a virtual tour of the amusement park at the West Edmonton Mall. Her module was based on an end project where students had to design a ride or “car” that would accommodate a special needs classmate. The classmate wanted to enjoy the amusement park as well. All kids could relate to that.

The video can be accessed via https://www.thinglink.com/video/850811682614673410

It is best watched using google cardboard or on a tablet (many laptops will not display it properly).

I created a video that took students to the plains in Africa where a young student had made his own wind turbine from found materials. This turbine solved many issues for his family including refrigeration and crop irrigation. In the video, studetns saw the geography, weather patterns and crop growth for the area. They like the boy in the story had to create a device from found materials that would solve a social justice issue in any area of the world.

All that being said what Trish and I found to be the best “gotcha” with the students is that they were not just expected to learn new information but they had to work together to solve a problem. This made the learning real and valuable and students saw the connections to real life.

Here are some screen shots of our Google classroom:

If you would like to look at it more in-depth or look at the entire module contact me and I will provide a user name and password.

Catherine

References:

Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.

Falk, J. & Storksdieck, M. (2010). Science learning in a leisure setting. Journal of Research in Science Teaching, 47(2), 194-212.

Lamon, M., & Laferrière, T., & Breuleux, A. (in press). Networked communities. In P. Resta, Ed., Teacher development in an e-learning age: A policy and planning guide, UNESCO.

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American educational research journal, 27(1), 29-63.

Niemitz, M., Slough, S., Peart, L., Klaus, A., Leckie, R. M., & St John, K. (2008). Interactive virtual expeditions as a learning tool: The School of Rock Expedition case study. Journal of Educational Multimedia and Hypermedia, 17(4), 561-580.

 

Knowledge construction in networked communities

  • How is knowledge relevant to math or science constructed? How is it possibly generated in these networked communities? Provide examples to illustrate your points.

In the past few weeks, much of the discussion regarding knowledge and STEM education has focused on the construction of knowledge in practical, hands-on environments.  In these cases, the relevant knowledge that the learner constructs is knowledge that helps bridge the user’s understanding of the world and their ability to function and interact with it.  Carraher, Carraher, & Schliemann’s (1985) study of working youngsters in Brazil seemed to corroborate this, with findings that point to the street youth excelling in math problems that had real-life context and using strategies different from the traditional ones they would have learned had they stayed in school.

While this certainly bodes well for the ideas of constructivism, I do feel that this type of or learning is limited to practical knowledge and not to more abstract, higher level concepts.  In Carraher et al.’s study, the youth were able to calculate using strategies they had developed selling fruit on the streets of Brazil including repeated addition (in place of multiplication).  However, further examination showed an inability for the children to solve problems using more tradition school-taught strategies.  This certainly supports the idea that knowledge construction that occurs in the real-world can provide a stronger functional ability with the necessary concepts, despite not building a stronger theoretical ability that lays the groundwork for more abstract and higher level concepts.

Networked communities provide a method of bridging this gap by connecting students with people and places that allow them to ground their knowledge in practical, real-world contexts.  Spicer & Stratford (2001) found that the link between students, experts, and real-world context is something that students saw as necessary for their own learning.  In their study, they set up a “virtual field trip” by using a program called Tidepools that simulated intertidal marine life and their responses to low oxygen environments.  While a survey of the undergraduate students that took part showed a general amicability to the simulation, all the students acknowledged that it could not nor should not replace real-life field trips, not can it replace interactions between students and experts.  Instead, the simulations would be ideal in a supporting role to either pre- or post-field trip as a way to introduce or review the topics.

However, despite knowledge coming from a variety of sources and the learning being spread across all participants, the construction of knowledge needs to be carefully monitored and guided by the teacher.  Moss (2003) noted concerns regarding the difference in knowledge and ability level between students and scientists in global communities.  This difference manifests in the activities that the students participate in which often resembles that which would normally be given to technicians, such as data collecting, and do not experience the full spectrum of scientific research.  His study into students using the JASON project supported this concern, showing that while students did benefit in the short term, their knowledge gains were not maintained at the end of the year.

From one perspective, the results from all three studies suggests that the constructed knowledge is that of functional, working knowledge required for students to be proficient at the tasks required in that environment.  However, care must be taken to ensure that the constructed knowledge is not constricting due to the limited foundational knowledge the students bring to the community.  Ideally, the activities and the community should foster the development of knowledge while still allowing students to take part as peers; a balance is easier said than done.

References

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British journal of developmental psychology, 3(1), 21-29

Moss, D.M. (2003). A window on science: Exploring the JASON Project and student conceptions of science. Journal of Science Education and Technology, 12(1), 21-30

Spicer, J., & Stratford, J. (2001). Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17, 345-354

Constructing meaning from “Scratch”

Knowledge in science is a socially constructed phenomena. As Driver et. Al (1994) note, the language of science is not that of observing natural phenomena, but it is instead the language of the constructions which we use to explain it. There is no equation of force sitting out there in nature. It is a construction based on our observations of our environment. More over, it has been negotiated by generations of scientist into the form of F=MA that we see today.

We must acknowledge that such complex social constructions are not available in the environment for our students to simply access. We can lead them to the data that generated them, and they may recognize patterns within it, but the specific language of science must be learned through a process of cognitive apprenticeship and enculturation into the values and language of the discipline. As science educators, we can begin this process by modelling the believes, language, and processes of the scientific community for our students.

Within networked communities, participants engage in the ongoing construction of knowledge and meaning within a discipline. These communities are often a combination of students, amateur enthusiasts, and professionals. Each group can meaningfully contribute to the ongoing dialogue of the field. Students pose questions and may link ideas to novel metaphors and models. Amateur enthusiasts may find novel processes that reduce cost and barriers to entry. Professional have a wealth of knowledge and experience to share but might also be able to crowd source data and ideas to advance a given field.

To illustrate the above, let’s consider the Scratch programming environment. In this free, web-based, programming environment any of the above categories of participants are able to create programs with relative easy by using a drag and drop interface. Projects are readily shared throughout the community and Scratch enables commenting on, favouriting, and remixing of projects. The coding of each project is readily viewable by all participants and often provides scaffolding for more novice programmers to use to create their own projects. Complex projects may be designed by expert programmers but can be explored by novices. Forums allow novices to seek advice or for groups to collaborate together on a single project.

 

Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.