Category Archives: C. Information Visualization

Balancing the scale with T-GEM

Elementary Science


Topic: Mass


Misconception: That the size and shape of (an) object(s) affects the balance on a scale even if the weight is the same


Students can sometimes get confused between the type of objects you may put on both sides of a scale and its impact on balance.  Some students think that if you put 1 pound of paper clips on one side of a scale and a 1 pound cube, the scale will not balance out.



  • Balance scales
  • Computers
  • Different objects





  • Assess students prior knowledge by asking them when using a balance scale, what is the relationship between the length of the arm and the mass of the objects that balance on it? Do different materials impact the balance of the scale?
  • Ask students to discuss with a partner how they will be able to get the scale to balance using different materials
  • Ask students to come up with a theory for how to get the scale to balance perfectly level
  • Ask students to use different materials to place on each side of the balance to see if smaller less heavy objects on one side and a single heavy object on the other of equal weight will influence the balance scale.
  • Have students hypothesize and test out if adjusting where the object(s) are placed on the scale influences
  • In partners, have the groups come up with some new rules for understanding weight and mass.
  • Have students use the PhET “Balancing Act” to test out different materials and their weight.


This lesson draws upon the T-GEM model.  According to Khan (2007) this model focuses on three important steps: Generate, Evaluate, and Modify.  In this lesson students are asked to generate their own ideas around mass /weight and how different objects will influence the balance of the scale. The students compare their predictions with their partners and then test out their theories that they have come up with.  After testing their hypothesis various times, the students then come up with some scenarios why different objects and lengths of arms will influence the balance scale. This is the ‘evaluate’ portion of the T-GEM.  The last stage of the lesson allows students to modify their original beliefs about weight and mass.  They are able to gain an new understanding regarding the relation of weight and mass to balance.  The extension part of the lesson is meant to give students further time to experiment with the ideas that they toyed with in the lesson. As Stieff et al (2003) discusses, it’s important to give students opportunities to give students virtually unlimited opportunities to experiment with real world objects.  Using visualizations allows students to understand the differences between physical variables and the equilibrium posting (Stieff et al, 2003). Students have the opportunity to test what they’ve learned  about balance and make predictions about how different objects will make the plank balance.




Khan, S. (2007). Model-based inquiries in chemistryScience Education, 91(6), 877-905

Stieff, M., & Wilensky, U. (2003). Connected chemistry – Incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285-302.

Virtual Fraction Fun


Targeted Group:         Grade 7

Format:                       Number Sense and Numeration – Adding Fractions

Misconception:           Adding fractions without finding common denominators or equivalent fractions.


Students have a great deal of difficulty with fractions and understanding why they need a common denominator in order to add them. As this seems to be an issue each year with grade 7 students I thought it would be a good idea to find new ways to address the concept.


Students will be able to add fractions competently with like and unlike denominators, finding equivalent fractions in authentic problems.

Materials:                   Virtual fraction manipulatives

Smartboard notebook software – Specific lesson plans
Authentic addition of fractions questions.

Process:                    This can be done individually or in pairs.

Step 1:

Give students a step by step adding fractions task sheet with three different tasks. The step by step process allows the students to see how the common denominator is found and how to add the fractions.

Step 2:

Direct students to the virtual manipulatives at the above URL.  This would be in their Edmodo folder already so they just have to click on the link.

Step 3:

Direct students to create the model shown on the task sheet on the virtual page using fraction blocks. Students should write the addition statements on the virtual page, and then transfer them to their task sheet. They should continue to do this for all the questions on the task sheet.

Step 5:

Ask the students to create their own addition problem using the fraction bars for the other students in the class to try. Students should be sure to draw this on their task sheet including the correct addition statements.


Consolidation Activity:            Smartboard Notebook Lesson


Introduce students to the Land Ownership task. Show them the picture of the land split into various areas for different owners in SmartNotebook. Students can use this software on the laptop computers using the mouse.

Work with a partner.

The map shows land owned by 8 families.
Determine what fraction of the land each family owns.
Four families sold land to the other four families.
Use the first map clues to help you draw the new map. You can use the back of the sheet to do this.
Write the addition to show each of the transactions.


  1. When all the sales were finished, four families owned all the land – Smith, Perry, Haynes, and Chan.
  2. Each owner can walk on their land without having to cross another person’s property.
  3. Smith now owns 1/2 the land.
  4. Perry kept 1/2 of her land and sold the other half to Chan.
  5. Haynes bought land from two other people. He now owns 3/16 of the land.
  6. Chan now owns the same amount of land as Haynes.

Students use the tools in SmartNotebook to colour in the areas owned by each family and manipulate the shapes to find the smallest piece in order to determine the common denominator. Once they have done this, students find the equivalent fractions for each of the owners property showing the fraction in equivalent form and simplest form. For example: Perry = 1/4 or 16/64.

When they have found all the equivalent fractions it should be easier for them to rearrange the fractions for the four families to own all the land according to the clues. They need to show the new configuration on their screen or paper, and show the addition statements that go with their solutions.

Education Theories:

The educational theories that are associated with this lesson plan are Learning for Use and Anchored Instruction.

Learning for Use framework is a pedagogical framework that integrates the content with the processes of the subject matter. Using the virtual manipulatives allows the students to visualize the process of creating the equivalent fractions, how a common denominator is determined, and then how the two fractions are added together. Since the content is being able to add fractions with unlike denominators, the manipulatives allow the students to try a lot of different combinations of fractions to find their equivalents and add them. The virtual manipulatives also allow the students to discover these concepts for themselves, and build upon that understanding using the tiles to create a number of different combinations.

Anchored instruction is the process of presenting instruction in the context of an authentic environment with problems or issues which learners must resolve. The problems or issues which are presented to learners in the authentic environment are “anchors” which link learning of content and skills to authentic tasks and activities in which the learning must be used (Gittens, Thompson, & Carter).  Although this is not a true representation of anchored instruction, the concept of buying and selling parcels of land is a real world connection. It is difficult to find authentic problems using fractions that the students would recognize. This problem could be related to their history or geography lessons particularly with New France and Seigneurial Systems or land use changes.

Using the virtual manipulatives aids the students in consolidating their understanding of equivalent fractions and common denominators, then transfer that understanding to a different task, using a different medium which demonstrates their understanding in environments other than those directly related to the specific learning environment (Dixon). Using a variety of mediums (virtual manipulatives, Smartboard tools, pencil and paper) students can consolidate their knowledge using anchored instruction and specific technology to augment their knowledge and increase their conceptual understanding.



Dixon, Juli K, 1997. Computer use and visualization in students’ construction of reflection and rotation concepts. School Science and Mathematics, Volume 97(7), University of Nevada, Las Vegas.

Kathy-Ann Daniel-Gittens , Kelvin Thompson and Philip Carter (2014). Anchored instruction. In K. Thompson and B. Chen (Eds.), Teaching Online Pedagogical Repository. Orlando, FL: University of Central Florida Center for Distributed Learning. Retrieved April 3, 2017 from



T-GEM and Balancing Chemical Equations

One of the major advantages to using digital simulation is the ability to aid students in visualising the invisible.  In the Science 10 unit, balancing chemical equations is something that many of my students have had difficulty with.  In the past, I have always fallen back on drawing and counting molecules before transitioning to more abstract calculating of number of atoms when helping students.  But the process of balancing chemical equations also lends itself to a T-GEM process using PhET simulations that both help students understand the process with analogies and also to provide them a visual reference of the atoms.  Moore, Chamberlain, Parson, & Perkins (2014) found benefits in using simulations in chemistry classes, noting that “students can engage with and discuss dynamic systems that provide feedback specifically designed to support student learning.”  This fits neatly with the T-GEM process which plans a series of lessons that support individual learning by encouraging students to explore scientific concepts and generate theories about their relationships, then evaluate their newly constructed knowledge, and finally modify their knowledge based on the feedback from their evaluation. (Khan, 2007)

The lessons utilize three PhET simulations to start students on the concept of balancing, analogies of balanced processes, and finally the act of balancing chemical equations.

Lesson 1: Initiate Ideas – Balancing Simulation (Balance Lab)

The goal of this lesson is to prime students on the concepts of balancing.  While the simulation is not strictly related to chemistry, it does visually demonstrate the concept of two parts of a single system being in balance.  This will be revisited in a few lessons when students are to balance reactants and products in a chemical equation.  In addition, it will serve as a starting point of a brainstorm/discussion on what other common everyday events require “balancing” and the beginning and end of the process have some quantifiable link.

Lesson 2: Generating A Theory – Reactants & Products (First with Sandwiches, then with Molecules); Additional activity – Law of Conservation of Mass Undemo

The next lesson will take the concepts of balancing and start to connect them with chemistry concepts.  In particular, the simulation allows students to change the number of sandwich ingredients (reactants) and see the number of complete sandwiches (products) that can be made.  During this activity, the discussion will lead towards the ideas of the ratio of reactants to products.  Once students feel they have a grasp of the sandwich analogy, they can move to the molecule simulation to transfer their thinking to atoms and molecules.  In addition, a live demonstration of the Law of Conservation of Mass using chemical reactants will be shown and, using the results from all three activities, students will start to formulate for themselves a concept of balanced chemical reactions.

Lesson 3: Evaluating Their Knowledge – Intro to Balancing (Introduction activity only)

As a way of evaluating their knowledge, the students will balance the three chemical equations provided in the Introduction activity.  For each equation, they will first predict the adjustments necessary to balance the chemical equation.  They are encouraged to using the knowledge generated from the lesson prior to complete the equations.  After their prediction, they can explore both visualization tools (scale and bar graph) as well as the actual molecular diagrams as they adjust the number of each molecule to balance the equations.  As part of their individualized learning, they are encourage to pick one of the three visualisation methods to use regularly.  The class will finish with a sharing of various balancing strategies in order to highlight general processes used to tackle the problems.

Lesson 4: Modify Their Knowledge – Continue with Balancing (Game activity)

The Game activity has 3 difficulty levels, each with 5 questions.  The students are to work through all 15 questions from Level 1-1 to Level 3-5, utilizing the strategy from Lesson 3.  They are free to choose whether they want their attempts to be timed or not as a personal challenge.  During this process, the teacher should be circulating and guiding students as they work through these problems, helping them re-formulate their processes as necessary if they answer a question incorrectly.

Lesson 5: Extension Of Knowledge – Working with Balanced Equations (Game activity)

The Reactants & Products simulation from Lesson 2 has a Game activity that can be used to assess and challenge student understanding.  The Game provides students with a balanced equation and a specific number of either reactants or products.  Using the ratio given in the balanced equation, the students have to determine the number of molecules required to complete the equation.  This will challenge students to consider balanced equations from a different perspective from Lesson 4.  Student understanding can be assessed formatively by engaging in discussion with them as they answer the 15 challenge questions.



Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Moore, E.B., Chamberlain, J.M., Parson, R., Perkins, K.K. (2014). PhET Interactive Simulations: Transformative Tools for Teaching Chemistry. Journal of Chemical Education, 91(8), 1191-1197


Financial Literacy for the Elementary Student – Coin Box Simulator through Anchored Instruction


Financial literacy is highlighted throughout the elementary grade levels in the Content area of BC’s New Curriculum. Most paper-pencil curricula address money identification, counting coin and dollar amounts, and one or two step word problems connected to money. However, these paper-pencil activities minimally equip students for financial literacy skills and applications. While exploring the information visualization simulators during this past week, the elementary and middle school simulations from Illuminations were easy to understand and seemed quite plausible to implement into already developed curriculum.

Literature Support for Lesson Cornerstones:

In a study conducted by Srinivasan, Pérez, Palmer, Brooks, Wilson and Fowler (2006), engineering freshman students who completed learning using MATLAB did not experience what they perceive as an authentic experience. The students felt that their experience was disconnected from real expert experience because they manipulated a simulated system rather than a real-life system. The researchers conclude that a probable reason for this disconnect is that the students “need/want authenticity to be able to make connections the experts make with the simulation” (Srinivasan, 2006, p.140).  This perception from the students leads educators to consider the value of real-life experiences in connection with simulated experiences.

Transferring simulated experiences to real-life experiences is supported through the study completed by Finkelstein, Adams, Keller, Kohl, Perkins, Podolefsky and Reid (2005). In their study, students in a second semester introductory physics course, who had used a simulation first to design a circuit system, were more successful later in designing real-life models. These same students also achieved greater success on related exam material that was completed two months after the simulated and real-life circuit building experience (Finkelstein, 2005). Due to these findings, authenticity of learning through the transferring of knowledge from simulation to real-life experience is a main cornerstone of the following lesson design.

In addition to authenticity, two lesser cornerstones, rich content and goal challenge motivation, are also incorporated into the lesson design as supported through the writings of Srinivasan et al. (2006). A pre-test assessment begins the lesson in order to determine prior knowledge and the optimal area of learning for the individual student. As well, this pre-test assessment can be used to determine pairings/groupings throughout the lesson activities. By providing rich content within the lesson plan, this affords opportunity for students with less prior knowledge to acquire new knowledge before exploring the simulated and real-life experiences. Building prior knowledge within students is critical for their success as Srinivasan et al. (2006) state, “Prior knowledge accounts for the largest amount of variance when predicting the likelihood of success with learning new material” (p.138). In regards to gaining knowledge of the student’s optimal area of learning, this connects closely to Vygotsky’s zone of proximal development, but is also supported by goal oriented motivation when learning goals are neither too steep, nor too simple: “If learning goals are too steep for a learner’s current context, learning is not successful. On the other hand, when learning is simple for the learner, the instruction can become over-designed and lead to diminished performance” (Srinivasan, 2006, p. 139).

Lesson Overview:

The following lesson incorporates the instructional framework of anchored instruction. This has been accomplished through a narrative multi-step problem solving feature. The three cornerstones highlighted in the section above are evident within the lesson: goal challenge motivation {decided by pre-test assessment}, content-rich material, and authenticity through real-life application.


Pre-test Assessment:

Provide paper-pencil assessment including photos of Canadian coins asking students to identify individual coins.

Addition questions for pre-test assessment may include:

  • How many quarters makes a dollar? How many dimes? How many nickels?
  • Show 3 different ways of making one dollar using a mix of coin types. Draw coins with labelled amounts to share learning.

 Include two ‘making change’ questions that require student to calculate amount of change from $1.


Content-rich Material:

Read and discuss Dave Ramsay’s book entitled, My Fantastic Fieldtrip on saving money.

Provide pairs of students with real sets of Canadian coins with accompanying anchored money solving problems. Problems may require students to interact with other students in the class or with the teacher. An example of an anchored money problem solving scenario follows:

Macey has been saving her allowance for seven weeks. She has a saving goal of $20.00. Each week she receives $1.50. Three weeks ago, Macey decided to buy her sister a rubber ball for her birthday which cost $1.00.  She used a loony from her savings . After seven weeks, Macey wanted to exchange all of her quarters for loonies, but she also wanted to keep half a dozen quarters for when she visited the candy machine at the grocery store when she went shopping with her mom.  She knew that several of her classmates had loonies that they could exchange for her quarters. (At this time, go around to your classmates and exchange your quarters for loonies just like Macey wanted to.) Once Macey exchanged her quarters for loonies with her classmates, how many loonies does Macey have? How much money does Macey have all together? How much more money will Macey need to save to reach her saving goal?


Simulation  Activity:

Illuminations –  Coin Box {elementary level}: Initially, direct instruction is required to demonstrate how by clicking on the cent icon in the bottom right corner, the student can see the amount of each coin as they are  US coins and difficult to decipher visually. Direct instruction should also be provided to guide the student to the “Instructions” tab and show the subtitled areas “Modes”. Student can then have time exploring the “Activity” section using the dropdown menu in the top left corner. Student should have ample time to explore all five activities including: “Count”, “Collect”, “Exchange”, “Change from Coins”, and “Change from Value”.


Transfer to ‘Real-Life’ Context: Students should have opportunity to transfer the simulated learning to a real-life context. An example of a real-life context is provided below, however adapting this to uniqueness of the learning community is recommended:

Cookie Sale –  Each student bakes one dozen cookies to sell to classmates and other students at the school. Pricing: 1 cookie = $0.40, 2 cookies = $0.75, 3 cookies = $1.00, 4 cookies = $1.25, 5 cookies = $1.45, 6 cookies = $1.70. This activity allows for assessment by the teacher through observation. Student’s accuracy and ease of providing change could be assessed using a simple checklist. Students should work in pairs  or small groups to help ensure that change to buyer is accurate.


Self Assessment/Reflection: A reflection activity is to be completed by each student. This activity requires the student to reflect on and share about growth and relevancy of learning. A self assessment printable is here:

Self Assessment


Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., Podolefsky, N., & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Srinivasan, S., Pérez, L.C., Palmer, R.D., Brooks, D.W., Wilson, K., & Fowler, D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 137-141. doi: 10.1007/sl0956-006-9007-5







Forces at Rest

Misconception: If an object is at rest, no forces are acting on the object. (

Instruction Framework: T-GEM

Digital Technology: PhET

Lesson Sequence:

I. Warm up – Classroom

Use a toy car on a platform to do some demonstrations and ask students about forces that are acting on them:

  • push the toy car to the right constantly
  • push the toy car to the right and let go
  • push a toy car to the right then slow it down by pushing it in the opposite direction
  • let the toy car sit on the platform by itself

This warm up activity is designed to get students thinking about forces and to bring forward any misconceptions related to how forces make objects move, speed up, slow down, or be at rest.

II. Generate Hypotheses – Classroom

Show students examples where objects are at rest. Example 1 is of the toy car from activity I staying motionless on a platform.  Example 2 is a second toy car hanging from the ceiling with a string, once again at rest.  Ask students what kinds of forces might be involved in keeping the toy cars motionless.  Ask students to draw free body diagrams of the two examples, share with a partner, then ask for some volunteers to draw their free body diagrams on the board.

III. Evaluate Hypotheses – Computer Lab

Students are taken to the computer lab with their free body diagrams from the previous activity.  Students are directed to the Forces and Motions PhET simulation and are asked to replicate the toy car demonstrations they saw in activity I.  For a refresher the demonstrations are written on the board:

  • push the toy car to the right constantly.
  • push the toy car to the right and let go.
  • push a toy car to the right then slow it down by pushing it in the opposite direction
  • let the toy car sit on the platform by itself

Instead of the toy car, they are free to choose an object in the simulation.

Students are asked to make sure the “Force Vectors” box is checked so they can visualize the different forces acting on the object.

Students are asked to compare their own free body diagrams from activity II and those shown in the simulation.  Students are asked to write down in their own words the similarities and differences between their free body diagrams from activity I and activity II.

IV.  Modify Hypotheses – Computer Lab

Students are asked to summarize the forces that act on objects when the object is moving, and when the object is at rest based on activities I, II, and II.

V.  Apply – Classroom

Students are paired up and each pair is given a small bucket filled with sand.  One partner is asked to stand up and hold the buckets motionless using one hand.  The teacher asks the pairs to draw free body diagram of this situation that show all the forces acting on that small bucket helping it remain motionless.



Conceptual understanding in science topics that includes force and motion is difficult because of the number of different misconceptions students bring with them into the classroom. DEMİRCİ, N. (2003) states, “It is evident from the literature that students of different educational backgrounds and different ages have basic preconceptions or misconceptions about force and motion concepts” (p. 40-41).  Khan (2012) suggests that, “the use of GEM in science classrooms can produce significant students gains in inquiry skills and conceptual understanding..” (p. 59).  It is this conceptual understanding that is critical to tackle misconceptions among students.  Khan (2012) also states that, “…T-GEM enhances student understanding” (p. 62).  Enhancing GEM cycles with technology (noted as T-GEM) can helps improve conceptual understanding of science topics.


PhET simulations are an excellent example technology enhancement to the GEM cycle.

Wieman, Adams, and Perkins (2008) describe PhET simulations in great detail and speak very positively of this interactive program.  Wieman et al. (2008) enumerate common features found in PhET simulation that enhance learning as below:

  1. “familiar elements…to build real-world connections” (Wieman et al., p. 682)
  2. “visual representations to show the invisible (the motion of air molecules in a sound wave)” (Wieman et al., p. 682)
  3. “multiple representation to support deeper understanding” (Wieman et al., p. 682)
  4. “multiple directly manipulated variables” (Wieman et al., p. 682)
  5. “instruments for quantitative measurements and analysis (measuring tape, clock, and pressure meter)” (Wieman et al., p. 682)

These different features truly allow students to be immersed in the concept, try out different scenarios and test hypotheses instantly.  These features combined make PhET an excellent tool for inquiry.  Khan (2012) airs caution however that simulations cannot be used by themselves as stand alone learning tools as doing so, “…contributes to poor uptake in science classrooms and “clicking without thinking” amount students” (p. 59).  Hence it is vital to pair PhET simulations with sound teaching methodologies like the GEM cycle, anchored instruction, or the LfU model.


DEMİRCİ, N. (2003). Dealing with misconceptions about force and motion concepts in physics: A study of using web-based physics program. Hacettepe Üniversitesi Eğitim Fakültesi, (24), 40-47.

Khan, S. (2012). A Hidden GEM: A pedagogical approach to using technology to teach global warming. The Science Teacher, 79(8). This article was written about T-GEM with middle-schoolers.

Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PHYSICS. PhET: Simulations that enhance learning. Science (New York, N.Y.), 322(5902), 682-683.


Energy Forms and Transfer in Science 4

Grade level: Grade 4 Science

Topic: Energy Forms and Changes

Misconception: That energy is a “thing” in and of itself; it does not come in a variety of forms. That energy cannot be transferred from one object to another.

While students generally understand that adding heat warms a material and removing heat (“adding cold” i.e., ice) cools a material, the concepts of various forms of energy and energy transfer are much more abstract, and are likely to cause misconceptions and misunderstandings for students. The lesson I am outlining corresponds to the British Columbia fourth grade science curriculum (Big Idea: Energy can be transformed/Content: Energy has various forms; energy is conserved; devices that transform energy).

• Students will be able to demonstrate an understanding of different forms of energy.
• Students will be able to demonstrate how energy transfers from one object to another.
• Students will be able to explain the energy system they created in terms of energy input, energy output, and energy changes

• Chart paper, Pens (x6)
• Computers to run PhET activity (requires Java Runtime Environment)

Step one: Generate ideas related to current concept(s)
Supporting inquiry: Students will be asked to respond to and develop hypotheses regarding the following questions:
• Question 1: What is energy input? What is energy output?
• Question 2: Does energy come in various forms?
• Question 3: Can energy be transferred from one object to another?

To complete this portion of the lesson, students will work in small groups (three to four students). Six stations will be set-up around the classroom with a piece of chart paper in the middle of the station (paper could also be hung on walls around classroom). Two stations will have question 1 written at the top of the chart paper, two stations will have question 2 written at the top of the chart paper, and two stations will have question 3 written at the top of the chart paper. Each group will have five minutes (time adjusted as necessary) at each station to brainstorm, discuss, and record ideas related to the question at the top of their chart paper. Groups will rotate three times so that each group will answer each of the three questions. At the end of the third rotation, each group will report out the ideas shared on the chart that they are currently at.

Step two: Hypothesize
Each group will be asked to create a hypothesis for each of the three questions. Their hypothesis can be based on their own ideas generated during the chart stations, or on the ideas of others. Students are welcome to walk around and look at the ideas generated at any of the chart paper stations to help them develop their hypotheses.

Step three (…to the computers!):
(Teachers may prefer students to work individually or in pairs at this point, depending on class composition, independence, and availability of computers)
Activity: PhET “Energy Forms and Changes” simulation  “Intro”
<found at:>
Students will begin by exploring energy input, output and conservation, as well as thermal energy, by interacting with the “Intro” simulation. In this simulation, students experiment with heating and cooling iron, brick, and water, and are able to add or remove energy by heating (visual: fire) or cooling (visual: ice) the materials given. By clicking the “Energy Symbols” box, students are able to watch the transfer of energy as the temperature of the materials increases or decreases.

Step four (still on computers):
Activity: PhET “Energy Forms and Changes” simulation  “Energy Systems”
Once students have completed the initial “Intro” to the “Energy Forms and Changes” simulation, students will click on the “Energy Systems” tab at the top left of the page to take them to the second simulation. This simulation allows students to see in more detail how energy is transferred and transformed as it moves between objects. Students build their own systems using a variety of energy sources, changers, and users, allowing students to opportunity to visually follow the transfer of energy throughout the system they have created.
Systems may be constructed using the following materials:
• wheel (turned by water, steam, bicycle), solar panel
• water tap, sunshine [with or without clouds], kettle, bicycle with rider
• container of water, regular light bulb, energy smart light bulb.

Step five: Re-evaluate ideas
Once students have completed both simulations, they will return to their hypothesis groups to re-evaluate their original hypotheses since gaining experience and knowledge while participating in the two simulations. The teacher will circulate to have each group explain how and why their original hypotheses changed after exploring “Energy Forms and Changes.”

A follow-up activity could be to have students complete a written response to answer the questions originally posed above (in step one), or to explain how their personal hypotheses changed throughout the course of the lesson. This would provide the teacher with individual feedback regarding understanding and possible continued misconceptions, as well as reconnect students to the original questions one more time.

Theory behind it:
Xiang and Passmore (2015) address the fact that the focus for science education has shifted “…from typical classroom practice that emphasizes the acquisition of content to a classroom in which students are active participants in making sense of the science they are learning” (p. 311). One of the leading principles discussed, behind this shift, is model-based inquiry, which can extend to include simulations. Through constructing, applying, and modifying models, students are given the opportunity to actively engage in the learning process, in addition to discussing, negotiating, and re-evaluating their conceptual models with peers (Xiang and Passmore, 2015). Finkelstein, Perkins, Adams, Kohl, & Podolefsky (2005) found that when the right learning environment was created, simulations could be equally effective, if not more effective, learning tools than traditional laboratory equipment “both in developing student facility with real equipment and at fostering student conceptual understanding” (p. 1-2). By integrating digital technology, not only can teachers access innovative and immersive learning environments for their students, but a number of factors can also be addressed, such as interest, motivation, and feasibility.

Srinivasan et al., (2006) highlight that “generally speaking, it is less expensive to develop a simulation than to provide real experience” (p. 137). While Srinivasan, et al. point out that this is especially clear in cases like cockpit simulators, this observation could be applied to many different science simulations, including the above PhET simulation used to teach fourth grade students about energy changes and transfer. While the PhET simulation is free (assuming school have access to computers and the internet), the time and cost associated with setting up a lab experience of the same depth would make the “real life” version of the simulations offered above unfeasible. In addition to providing an experience that would not be feasible without digital technology, novelty and interest, both addressed by Srinivasan et al. (2006) as motivational variables, are targeted in the simulations provided by PhET as well. Students are given the opportunity to explore science using a digital simulation which has the potential to increase interest and motivation as they actively engage with a simulated learning experience that would not have been possible in traditional elementary classroom settings.


Energy forms and changes. (n.d.). Phet Interactive Simulations, University of Colorado. Retrieved from

Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research, 1(1), 1-8.

Science 4: Big idea and content. (n.d.). British Columbia Ministry of Education. Retrieved from

Srinivasan, S., Perez, L. C., Palmer, R., Brooks, D., Wilson, K., & Fowler. D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 137-141.

Xiang, L., & Passmore, C. (2015). A framework for model-based inquiry through agent-based programming. Journal of Science Education and Technology, 24(2-3), 311-329.

Climate Change through WISE, PhET, and Climate Time Machine

Misconception: Climate Change cannot be stopped and that it has limited effects on people and society.

Targeted grade group: Grade 7

Premise: Given that climate change is a growing concern and a current global problem frequently discussed in the media, it is important students become educated and empowered citizens about this issue.

Step 1: Assess students’ prior knowledge about climate change

Research: Shepardson, Niyogi, Choi et al. (2011) conducted a study to discover the conceptions secondary students have about global warming and climate change. Their research corroborated with previous research; there were multiple misconceptions students had about these two topics. Students showed confusion about the greenhouse effect, such as the kind of radiation it involves (Shepardson et al., 2011). As well, students also believed global warming was caused by greenhouse gases and air pollution in general (Shepardson et al., 2011). More importantly, students indicated that the negative effects of global warming and climate change will not have a significant impact on them or society (Shepardson et al., 2011). Specifically, they have the belief that humans will create new technologies or find ways to overcome these negative environmental changes (Shepardson et al., 2011). Moreover, students solutions to minimizing the effects of climate change and global warming include: using the car less, limiting pollution and reducing factories (Shepardson et al., 2011).

Activity: Shepardson et al. (2011) utilized a global warming and climate change assessment instrument where students completed open ended questions and “draw-and-explain” items to allow assessors to analyze the content of responses. This is an effective method to implement because I can visualize my students’ understanding of climate change in terms of accuracy, depth and breadth. I would likely begin with asking them what they think climate change or global warming means and to draw a picture of how they believe it works. An open-ended question I would include from the article was based on the National Assessment of Educational Progress (NAEP) that asks students to explain how global warming might affect oceans, weather, plants, animals, people and society (Shepardson et al., 2011).

Step 2: Have students explore Climate Time Machine

The Climate Time Machine (hyperlink) was created by NASA to visualize the time lapse of the effects of climate change on sea ice, sea level, carbon dioxide and global temperature. It allows students to “see” the what climate change is. This supports the Scaffolded Knowledge Integration Framework principle of “making thinking visible” (Linn, Clark, & Slotta, 2003). Visualizations like the Climate Time Machine helps students develop connections to concepts (Linn, Clark, & Slotta, 2003). The effects of climate change are not easily visualized by students but using this digital visualization tool, students can better understand what climate change looks like over time.

Activity: I would have my students get into small groups of two or three and to “play around” with the dials of each climate indicator to see how the Earth has been impacted by climate change. They will then discuss aspects they have noticed and things they have learned.

Step 3: Have students explore PhET simulations on glaciers and the greenhouse effect

PhET offers two simulations related to climate change for students to explore. Finkelstein, Perkins, Adams, Kohl, and Podolefsky (2005) found that in inquiry-based units, students exploring simulations learned more content than students using actual lab equipment. That is, students who used computer simulations showed more understanding about circuits in terms of building and writing about them (Finkelstein et al., 2005).

Activity:  The first simulation is called Glaciers ( and students can adjust with mountain snowfall and temperature to see the change in size of glaciers. They will also have opportunities to measure different parameters of a glacier. Students will be asked to reflect in their journals of how this activity is connected to climate change and to develop linkages of how this can affect the oceans, and habitats of living organisms. The second simulation is The Greenhouse Effect ( and students get to alter gas concentration, cloud presence, and explore the temperature of the atmosphere. Students will build an understanding of what the greenhouse effect is and why greenhouse gases affect temperature. In a class discussion, students will contribute ideas to create a class-wide conception of the greenhouse effect, with the teacher facilitating understanding.

Step 4: Redesign WISE project catered to students’ conceptions and misconceptions about climate change

A Web-based Inquiry Science Environment (WISE) project will be adapted and modified to address students’ understanding about climate change. WISE is founded on the scaffolded knowledge integration perspective that has four principles of making student thinking visible, making science accessible, creating opportunities for peer learning and encouraging continuous learning (Linn, Clark, & Slotta, 2003). The specific WISE project I would modify is “What Impacts Global Climate Change?”. It explores the greenhouse effect and has opportunities for empowering students in effective ways to alleviate climate change. However, there is a significant amount of time spent discussing solar radiation and I would like my students to explore other types of radiation and furthermore, the ways actions in everyday life that contribute to global warming.

Step 5: Assess students’ progress

Linn, Clark, & Slotta (2003) emphasize WISE through scaffolding knowledge integration framework as a tool to make student thinking visible. This relates to the assessment of student learning in the process of the unit about climate change. Through discussions, journals and the WISE platform (e.g. it tracks student responses), educators will have a range of assessment methods to explore how student thinking changes over time.


Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.

Shepardson, D.P., Niyogi, D., Choi, S. et al. Climatic Change (2011) 104: 481. doi:10.1007/s10584-009-9786-9

Learning about molecules using T-Gem, Phet and Leap Motion

Misconception: How molecules are created and how manipulating the atoms creates new and different molecules.

*I teach elementary and would perhaps introduce this to my grade 7-8 students. It may be more applicable to high school. I explored chemistry as it is my weakest link in science so if my terminology is off I apologize to those who are chemistry stars. I just wanted to challenge myself to learn something new.


Students will be able to demonstrate basic knowledge of molecules and how they are created. Students will have an opportunity to manipulate molecules to form different compounds.

Students will recognize that molecules must be formed in a certain way with specific bonds.


Computers on Wheels (COWS)

One station set up with leap motion controller and molecules activity.


For a final exploration of this module or as a means to extend the learning of those who are interested I would then tie in the Molecular Workbench website. This site, although more advanced, would allow students to investigate molecules in more depth on their own.

The foundation of this lesson is based on Finkelstein et al (2005) article “When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment “. In previous chemistry courses, students have used coloured Styrofoam and connectors to create molecules. As the students can create just about anything they have no idea if the molecules they are creating hold up to the laws of chemistry. A computer simulation would correct any misconceptions the students had. Finklestein et al (2005) reported that “results indicate that properly designed simulations used in the right contexts can be more effective educational tools than real laboratory equipment, both in developing student facility with real equipment and at fostering student conceptual understanding (p. 2).” They further state that in an inquiry-based laboratory, students using the simulations learned more content than did students using real equipment (p. 6).”

Steiff and Wilensky (2003) reported that computer-based curriculum provides an opportunity for inquiry-based chemistry lessons. (I highly suggest this article if you have not read it and teach chemistry).

“The modeling environment, connected chemistry, uses a “glass box” approach (Wilensky, 1999a) that not only enables students to visualize the molecular world but also provides them with virtually unlimited opportunities to interact with and to manipulate a simulated molecular world to gain a deeper under- standing of core chemistry concepts and phenomena (p. 285).”

Simulations allow students to make predictions about a concept and justify their predictions with observable outcomes (p. 286).

Finally, the article by Edens, K., & Potter, E. (2008) although pertaining to mathematics and word problems made me stop and really investigate the way my students use visuals to explain their thinking in every subject.

“Students who used schematic visual representations were more successful problem solvers than those pictorially representing problem elements. The more “schematic-like” the visual representation, the more successful students were at problem solution (p184).”

I realize that it would likely be beneficial for me to introduce to my students the concept of schematic visuals and pictoral visuals. Are my students drawing a picture and not really saying anything or are they using schematics to demonstrate interactions and important concepts? This idea really made me stop and think about how I have taught using visuals.


Edens, K., & Potter, E. (2008). How students “unpack” the structure of a word problem: Graphic representations and problem solving. School Science and Mathematics, 108(5), 184-196

Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Stieff, M., & Wilensky, U. (2003). Connected chemistry – Incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285-302.





Double Dipping with “Conquering Mount Gravitation”

Hmmm… I’m not sure if this is a legitimate post for this week so I will likely address the second question later on. Anyway, it seems as though my post from the TGEM week fits nicely into our task requirements. I definitely put some hours into this lesson, so here goes… (the lesson is attached to the end of this post)

Having yet to finish reading the “related literature”, I think I will return with more thoughts to add to my PhET lesson!  To be continued!!!!

<insert dramatic yet Monty Python-esque interlude music>

I’m back! The two papers that I read today were “Reality versus Simulation” and “Fifty Years of Thinking About Visualization and Visualizing in Mathematics Education: A Historical Overview”. ( Srinivasan et al, 2006; Clements, 2014).  Relating these reading to my guided inquiry-based, simulation, T-GEM lesson…

  1. “Reality versus Simulation”
    • the authors conceded that there were no distinguishable quantitative differences between students’ learning outcomes via a simulation or an actual lab
    • the big takeaway was that the majority of students perceived that the simulation was not as valuable of an experience than actually setting up and testing with real equipment; the simulations seemed inauthentic to students; professors perceived no difference in modalities
    • the authors suggest there may be benefits to having open-ended discussions with students to help them appreciate the validity and worthiness of using a problem-free, time efficient simulation
    • adding this type of discussion to Mt. Gravitation would be relatively simple to do; I refer to the simulation throughout the unit already, however, a more directed discussion could help mitigate students’ negative perceptions
  2. “Fifty Years of Thinking About Visualization and Visualizing in Mathematics Education: A Historical Overview”
    • very engaging paper for mathematics educators; very readable and contains engaging problems throughout; I subjected my mathematically gifted, 10 year old to the H-Shape problem– he nailed it and when asked about the method he used, he used analytical approaches over visual approaches (very interesting!!!)

      Wattanawaha’s Monash Spatial Thinking Test, (Clements, 2014)

    • there are many interpretations of what mathematical visualization entails
    • one research process is to categorize students using the Mathematical Processing Instrument where subjects answer problems and solutions are categorized as visual, verbal-logical or neither in nature.
    • it turns out that students who utilize verbal-logical methodologies primarily, perform better on math tests
    • the author pushes the reader to think of ways to exploit a visual learner’s strengths to make them more successful in the mathematical classroom setting
    •  relating these ideas back to my lesson reminds me that some of students will be able to interpret the graphical relationships connecting force to separation distance, more easily than others; my students have inherent strengths– to be able to work with those strengths yet also assist them develop their “non-strengths”, will continue to be a goal of mine as I guide them through their learning
    • another interesting takeaway from this paper was that visual learners tend to apply visual strategies to problems that are optimally solved using verbal-logical strategies; also verbal-logical learners will tend to favour verbal-logical strategies when a visual approach is more efficient; as educators, we can introduce problem strategies that “go against the grain” of our students’ preferences, in order to maximize their overall experience and comprehension

Conquering Mt. Gravitation


Clements, M. K. A. (2014). Fifty years of thinking about visualization and visualizing in mathematics education: A historical overview. In Mathematics & Mathematics Education: Searching for Common Ground (pp. 177-192). Springer Netherlands.

Srinivasan, S., Perez, L. C., Palmer,R., Brooks,D., Wilson,K., & Fowler. D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 137-141.

pHET, TGEM & The Greenhouse Effect

With the advent of increasingly new technology, scientific facts and concepts can now be produced visually on digital screens.  This enables student misconceptions to be clarified and effective learning to be encouraged.  One avenue of learning in which interactive animations and simulations are utilized to promote science learning is pHET simulations.  In their research, Finkelstein, Perkins, Adams, Kohl, and Podolefsky (2005) state that students who learned material through computer simulations outperformed on conceptual questions when compared to students who used real equipment.  They further argue that while simulations might not necessarily promote conceptual learning, there is some validity to enhance student learning through computer simulations under the correct guidance, facilitation and application.

For my lesson plan, I have chosen a pHET Greenhouse Effect simulation available at:  It can be used in the earth science unit of Science 10.  The lesson was created with the T-GEM in mind, which briefly involves three levels of instructional strategies (Khan, 2007): compiling information and generating a relationship, evaluating the relationship, and modifying the relationship.

The Simulation Activity:

Preliminary Understanding:

  1. Click on the “Adjustable Conditions” button and set the Green House Gas concentration to zero. Turn off all photons and set the temperature to Celsius.
  2. What do the yellow and red particles represent and where do they come from?
  3. Why might the red particles be heading out to space?
  4. What is the minimum temperature?

During the Ice Age:

  1. Click the “Ice Age” button and record the minimum temperature.
  2. Record: [CO2]
  3. Follow a red particle and observe how it behaves. Repeat for a different particle at different locations. Summarize your findings. Repeat with the yellow particle.
  4. How do the yellow and red particles behaviours compare?

Discuss similarities and differences.

  1. What is the temperature now? How does this compare to the temperature you measured when no green house gases existed? What can you conclude about the effect of green house gases on the Earth’s temperature? Is this a good or bad thing? Explain.
  2. What happens to the yellow and red particles when clouds are introduced?
  3. What happens to the temperature when clouds are introduced? Explain why you think this occurs.

During 1750:

  1. Click the “Ice Age” button and record the minimum temperature.
  2. Record: [CO2], [CH4], [N2O]
  3. How do these amounts compare to those at the time of the Ice Age?
  4. Predict what you think is happening presently.

The Present:

  1. Click the “Present” button and record the minimum temperature.
  2. Record: [CO2], [CH4], [N2O]
  3. How do these amounts compare to those at the time of the Ice Age and 1750?
  4. Add clouds and observe what happens. Record your observations.
  5. What would happen if the green house gas concentration increased? Adjust the GHG level to lots and observe. Record your observations.
  6. What factors might also influence this overall greenhouse effect?



Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.